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Chapter 1
Introduction

The market-driven electronics industry continuously requires products with greater
functionality, higher reliability, lower costs and shorter time-to-market. These are re-
alized by the unprecedented advancements in the semiconductor process technology.
Semiconductor chips (ICs) are considered the foundation of modern electronic prod-
ucts. The need of faster and smaller products has driven the semiconductor industry to
introduce a new generation of complex chips. These chips allow integration of a wide
range of complex functions, which used to comprise a system, into a single die, called
System-On-Chip (SOC).

Being able to rapidly develop, manufacture, test, and verify SOCs and products
using such SOCs is very crucial for the continued success of our economy at-large.
One of the major issues in making SOC production practical and cost effective is the
complexity of creating a multi-million gate SOC from scratch using conventional meth-
ods and design flow. To overcome this problem, the design community has created a
new chip design paradigm based on design reuse [KB99], in which an IC consists of
multiple large pre-designed and pre-verified reusable building blocks, and only a few
IC-specific modules. These large reusable building blocks are called cores and the
design paradigm that utilizes these cores is called core-based design paradigm. The
use of embedded cores reduces the design-development time through design reuse and
allows import of external design expertise.

1.1 Core-Based Design Paradigm

Modern SOC designs often contain one or multiple programmable CPUs, DSP cores,
application-specific hardware blocks, embedded memories of different types, and some
analog modules [GZ97]. Therefore, embedded cores not only cover a wide range of
system functions, but also contain an unprecedented range of design styles, from logic
to DRAM to analog. Furthermore, they may come in hierarchical composition also.
For instance, a complex core may embed one or more simple cores. Figure 1.1 shows
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Complex core

SRAM

SRAM

DRAM

MPEG

UDL

DSP

Figure 1.1: An example of a core-based SOC design.

an example of a core-based SOC design. The successful design of such complex SOCs
requires expertise in diverse technical areas, which are increasingly hard to find in a
single design house. Next, it is not economical for a typical organization to create all
the required intellectual property (IP) functions by itself. Hence, IP cores are being
delivered from multiple sources. The variety of sources provides a diversity of trade-
off and formats, and opens the door for plug-and-play requirements in chip design.
Dataquest [Smi97] reported that mainstream ASIC designers fill 90% of their silicon
area with embedded cores, 40-60% of which using external cores and the rest from
internally developed ones, while leaving only 10% of the chip for the application-
specific user-defined logic (UDL).

The embedded cores come in a wide range of hardware-description levels. They
spread from fully optimized layouts in GDSII format to widely flexible RTL (register-
transfer level) codes. Based on the hardware description level, embedded cores can be
classified into the following three major categories [VSI96]:

1. Soft Cores: a soft core is a synthesizable RTL code.

2. Firm Cores: a firm core is a synthesized RTL code or a generic -library gate-level
netlist. A firm core that is not placed and routed, may be optimized with respect
to performance and size for a few target technologies during placement.

3. Hard Cores: a hard core exists in layout and is already optimized for one or
more key parameters, such as speed, size or power for a specific target technol-
ogy. Hard cores come as placed and routed netlists, physical-layout files (GDSII
format), or in a netlist/layout combination.

The three types of cores offer various trade-offs. Soft cores leave much of the
implementation to their users, but are flexible and process-independent. Hard cores
have been optimized for predictable performance, but lack flexibility. Firm cores offer
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a compromise between the two. The core-based design paradigm divides the IC design
community into two groups: core providers and core users. A core provider designs
and maintains a library of reusable IP cores, while a core user is responsible for design
and manufacturing of system chips using various cores and user-defined logic modules.
Both core providers and core users can exist within a single company, as well as in
different companies.

For many large semiconductor and system companies, the core-based design is not
a totally new phenomenon, as they have practiced design reuse for years by integrating
simple macros [BBT95] and in-house cores into ASICs. However, these cores were
not mixed and matched from multiple external sources. The practical implementation
of the core-based design paradigm with cores from diverse sources faces numerous
challenges in the areas of SOC design, integration and test. The list of challenges
is typically headed by the complexity of test and diagnosis. As the semiconductor
industry keeps moving towards the creation of large and complex SOCs, testing of
these chips is becoming more and more difficult. If no attention is paid to the specific
issues that are related to design for testability (DfT) and test generation for complex
SOCs, testing may become the bottleneck in their overall development trajectory. In
the next sections, first a brief introduction to manufacturing test is given and then the
main challenges of testing system chips are described [Zor97].

1.2 Manufacturing Test

Manufacturing test is a critical step in the IC manufacturing process. Due to imper-
fections in the manufacturing process, all chips need to be tested for manufacturing
defects and system chips are no exception to that. IC test is performed multiple times
during volume production to screen ICs upon their manufacturing. IC testing ensures
that bad chips are not shipped to the customer and hence helps in meeting customer’s
quality requirements. Furthermore, IC test plays a key role in analyzing defects in the
semiconductor manufacturing process. The feedback derived from the test is the only
way to analyze and isolate many of the defects in today’s processes. Time-to-yield,
time-to-market, and time-to-quality are all controlled by test.

To test a circuit, test stimuli need to be applied to the circuit and test responses
need to be observed from the circuit. The observed responses are then compared to the
expected responses and if a mismatch is found, the circuit is considered to be defective.
Test stimuli can be generated on-chip or off-chip. Similarly, test responses can be
observed on-chip or off-chip. To model the physical effect of a defect, abstract fault
models have been developed. The most popular is the stuck-at fault model [Eld59].
This model considers that a defect will cause an input or an output of a gate to be
stuck at a constant ’1’ or ’0’ value. Some defects even causes propagation delays along
paths in the circuit to fall outside the desired limits. To model these faults, two very
commonly used fault models are the gate-delay fault [BR83,Wag85] and the path-delay
fault [Smi85]. Gate-delay faults model those defects that occur at inputs or output of a
gate and cause the gate delay to be outside its specified range. Path-delay faults model
those defects that cause cumulative propagation delays along circuit paths.
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Various test methods such as functional test, BIST, Iddq, and scan test, etc., are
described in literature [ABF94,BA00]. Some of the test methods require modifications
to the circuit-under-test. The main goal of all these test methods is to detect as many
faults as possible under minimum test time and area overhead. A brief description of
main test techniques are described below.

Functional Test

In case of a functional test, no fault model is assumed and no modifications are required
in the circuit. The circuit is tested in the normal operating mode. Test stimuli are
applied at the primary input terminals and the test responses are observed at the primary
output terminals of the circuit-under-test. In a functional test, the functional behavior
of the circuit is tested and therefore unless tested exhaustively, measuring the quality of
the test is very difficult. Exhaustive testing requires a very large test-application time
and hence is not feasible for large complex SOCs.

Built-In-Self-Test (BIST)

In Built-In-Self-Test (BIST), test stimuli are generated on-chip by means of a linear
feedback shift register (LFSR), while the test responses are compacted into a digital
signature by means of a multiple-input signature register (MISR). Therefore, BIST
requires modifications to the circuit-under-test. One of the problems with BIST is the
fault coverage and long test-application time due to the large number of test patterns.
Typically, a LFSR generates pseudo-random patterns and hence it is very hard to detect
all faults. In order to increase fault coverage, advanced techniques such as test points,
deterministic BIST are required that results in a large area overhead.

Scan Test

Scan test is a well-known and often used test technique. Here, various scan paths are
created in the circuit-under-test by means of shift-registers. These shift registers are
commonly referred to as scan chains. Therefore, this method also requires modifica-
tions to the circuit-under-test. Test patterns are generated off-chip by using Automatic
Test Pattern Generator (ATPG) tools. To test the circuit, test stimuli are shifted into the
scan chains and applied to the primary input terminals. Then the circuit is run in the
normal operation mode and finally, test responses are shifted-out from the scan chains
and observed from the primary output terminals. The main advantages of scan testing
are a very high fault coverage and low test-pattern count.

Iddq Test

Iddq testing [CT97] is a test technique based on measuring the quiescent supply current
of the circuit-under-test. The decision criterion is based on the fact that a CMOS circuit
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does not draw any significant current when in a stable state. In a quiescent state, only
the leakage current flows, which in most cases can be neglected. The fact that under
certain conditions a significant current flows when the circuit-under-test is in a quies-
cent state, indicates the presence of a manufacturing defect in the circuit. Application
of test stimuli can be done by using scan chains inside the circuit. Unfortunately, for
very deep-submicron processes, Iddq testing is becoming increasingly limited in use,
due to increase in the standby current for these processes.

Delay Fault Test

Delay fault testing is used to detect defects that cause propagation delays along the
paths in the circuit-under-test to fall outside the specified limits. To detect a delay
fault, two-pattern technique is commonly used. In this technique, two test patterns are
applied to the circuit in two consecutive clock cycles. The first test pattern is used to
set a proper value at the input end of the path under test, while the second test pattern
causes a rising or falling transition at the same end. By sampling the output end of the
path under test after the desired interval, one can check the occurrence of a delay fault.
Similar to the Iddq testing, once again, the application of test stimuli and observation
of test responses can be done by using scan chains inside the circuit-under-test. For
modern chips, where clock speed is in the range of GHz, delay fault testing is becoming
more and more important.

1.3 Challenges in Testing Core-based SOCs

The use of pre-designed cores in an SOC design looks conceptually similar to the
use of standard IC components in the design of traditional system-on-boards (SOBs)
or printed-circuit-boards (PCBs). However, the manufacturing test processes in both
cases are quite different. In the traditional system-on-board design, a board designer
plugs in a number of stand-alone pre-manufactured and pre-tested IC components into
a PCB. Whereas in a core-based system chip, an SOC designer needs to embed cores
which are not yet manufactured and hence untested. Therefore, the SOC designer is re-
sponsible for manufacturing and testing of not only the interconnect between the cores,
but also the cores themselves. Another key difference between SOB and SOC is the
accessibility of component peripheries. In a SOB, direct physical access to every input
and output terminal of the component is available for probing during manufacturing
test for the SOB. Whereas, in case of an SOC, cores are deeply embedded in the SOC
and direct physical access to peripheries of the cores is not available by default.

Apart from testing issues of the traditional deep-submicron chips, such as fault
coverage, overall test cost and time-to-market, testing of system chips has three main
testing challenges. These challenges are described below.

1. Core Internal Test
A core is typically the hardware description of today’s standard ICs, e.g. DSP,
RISC processor, and DRAM. The internal test of a core is typically composed
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of internal design-for-testability (DfT) structures (e.g. scan chains, test points,
or BIST), if any, and the required set of test patterns to be applied and observed
at the core peripheries. Generating a test for a core requires in-depth knowledge
about the internals of the core. In most cases, except for soft cores, the core
users have very limited knowledge about the internal structure of the used core.
Therefore, it is very hard for a core user to prepare the test for it, especially if a
core is hard one or is an encrypted intellectual property block.

This necessitates that core providers who own their cores and know about the
internals of the cores also develop test solutions for their cores. This means that
together with the description of the core, a core provider also delivers its test
information, i.e. the DfT structures and the test patterns.

However, here a major issue for a core provider is to determine the type of
DfT and the quality of the test without even knowing the environment in which
the core will be used. Furthermore, the core internal test prepared by the core
provider should be adequately described in a widely accepted and ready-to-use
format such as the IEEE Standard Test Interface Language (STIL) [Soc99] or
the proposed IEEE Core Test Language (CTL) [KKK

�

99, KLT
�

01].

2. Core Test Access and Core Isolation
The core tests developed by the core providers are originally described at the
input/output terminals of the core. In SOCs, cores are deeply embedded in the
environment and usually their terminals are not directly accessible from the SOC
pins. This necessitates the existence of test-access paths from the SOC primary
pins to the embedded core and vice versa with sufficient bandwidth to fulfill the
test requirement of the core. Furthermore, in order to apply the given set of tests
to a core, the core must be isolated from its environment. The test access to
embedded cores and isolation of cores are obviously the responsibilities of the
SOC designer, who owns the system design and therefore knows the environment
of an embedded core in the particular SOC.

3. Test Integration and Scheduling
Once the tests for all cores have been developed, the SOC designer needs to
develop tests for the interconnect wiring and logic between the cores. Further-
more, all these tests need to be translated from the core terminals to the SOC
pins [ML99]. Finally, one needs to integrate the test facilities of all embedded
cores and the interconnect circuitry under an SOC-level test-control mechanism.
The SOC-level test-control mechanism is required to execute various tests and
apply/capture the necessary test data. In addition to test integration, SOC test
requires efficient test scheduling. The tests of various cores should be scheduled
such that there are no conflicts, while the chip-level requirements like test time
and power dissipation during test are satisfied.

Zorian et al. [ZMD98] presented a conceptual test architecture for testing embedded
core-based SOCs that meets the test requirements described above. Figure 1.2 shows
the conceptual test architecture for an example SOC. The architecture consists of the
following three elements:
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MPEG

Complex core

SRAM

SRAM

DRAMDSP

Source Sink

UDL

Wrapper
TAM

Figure 1.2: An example of the conceptual test architecture [ZMD98].

1. Test pattern source and sink

A test pattern source generates test stimuli, whereas the test pattern sink receives
test responses. Source and sink for a core can be implemented either off-chip by
means of external Automatic Test Equipment (ATE), on-chip by means of Built-
In Self-Test (BIST) or as a combination of both. Furthermore, source and sink
do not need to be of the same type.

2. Test access mechanism

A test-access mechanism (TAM) takes care of on-chip test data transport from
the source to the core-under-test and from the core-under-test to the sink. Ba-
sically, a TAM contains a number of wires that bridges the physical distance
between the source and a core, as well as between the core and the sink. TAMs
can be implemented in various ways. For example, existing functional buses on
the chip can be used to transport test data or a set of transparent paths can be
created in the design.

3. Core test-wrapper

A core test-wrapper is a thin shell around the core. The core test-wrapper forms
an interface between the embedded core and its environment. It connects the
terminals of the embedded core to the rest of the chip and to the TAM. In case
of any mismatch between the number of core terminals and TAM width, the
wrapper also provides width-adaptation by means of parallel to serial conversion
and vice versa.

All three previously discussed elements can be implemented in various ways, such
that a whole palette of possible approaches for testing embedded core emerges. Differ-
ent implementations have their specific advantages and disadvantages, especially with
respect to silicon area and test-application time.
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1.4 Motivation

For the core-based design methodology to be successful, it is important to have proper
tool support for insertion of design-for-test hardware such as wrappers and TAMs, test
development and test application for complex SOCs. To design a core-based test archi-
tecture for an SOC, the SOC designer needs to design wrappers around all cores and
needs to provide one or more TAMs to every core. Various cores in an architecture can
also share the same TAM. For the core test-wrapper, the IEEE P1500 Standard for Em-
bedded Core Test [HM] is an IEEE standard under development that defines a standard
but scalable core wrapper architecture [DZW

�

03] to enhance test interoperability be-
tween multiple cores. However, the IEEE P1500 does not provide rules and algorithms
to automatically design an optimal wrapper for a core. Therefore, efficient algorithms
are required to generate an optimal wrapper around a core. Furthermore, the standard
does not standardize TAM design and optimization, as this is exclusively in the domain
of the SOC designer and depends on many SOC-specific parameters. Many tasks in
this domain involve optimization of complex problems or elaborate bookkeeping and
hence are very suited for automation. Two such tasks are test-access planning and test
scheduling.

1.4.1 Test Access Planning

The term test-access planning refers to an activity that involves analysis of the chip-
level resources and evaluation of the consequences of the usage of various TAM and
wrapper types. It also involves trade off of configurations in terms of cost factors
such as area, test time, performance impact, and test quality. This activity is also
referred to as test architecture design. To design a test architecture for an SOC with a
given set of cores and a given number of test pins, the SOC designer has to determine
(1) the number of TAMs, (2) the TAM widths, (3) the assignment of cores to TAMs,
and (4) the wrapper design for each core. For a small SOC, having only a few cores
and a few test pins, a good test architecture can be designed manually. However, the
complexity of designing an architecture increases with the increase in the number of
cores and test pins. In fact, the problem of designing an optimal test architecture is

���

hard [ICM01], indicating that the required computing time increases exponentially with
the problem instance size. Therefore, techniques are required, which can efficiently
search the solution space of feasible architectures and yield an optimal or near-optimal
test architecture.

1.4.2 Test Scheduling

The size of the SOC-level test data set is an important cost factor, since it determines
both the required storage capacity for test patterns of the automatic test equipment
(ATE) and the test-application time. The test-data volume for modern SOCs is increas-
ing dramatically and even faster than the number of transistors in SOCs. The increase
in test-data volume can lead to a situation where an SOC has a large test-application
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time and requires large and expensive automatic test equipment (ATE) with very deep
test-vector memory per channel (pin) to store all the test data. At SOC level, there is at
least one test per core, in addition to one or more tests for the interconnect wiring and
logic circuitry. All these tests need to be executed such that there are no resource con-
flicts. The time required to execute all tests in an SOC architecture is the overall SOC
test-application time. The term test scheduling refers to an activity that determines
start times of the various core tests, such that no resource conflicts occur and the over-
all SOC test-application time is minimized or the power dissipation during test does
not exceed a threshold level. There is a need for efficient test scheduling algorithms
which minimize the overall SOC test time and help in fitting the test-data volume for
the SOC on the target ATE.

1.5 Objectives

This thesis describes parts of the research that has been carried out at Philips Research
Laboratories, Eindhoven, in the domain of testing embedded-core based system chips.
As mentioned in the motivation, many tasks in this domain involve optimization of
complex problems or elaborate bookkeeping and hence are very suited for automa-
tion. Two such tasks are test-access planning (or test architecture design) and test
scheduling. Therefore, the objective of this research was to develop an automated
tool [GM04b] that can assist SOC designers in selecting cost-effective test architec-
tures and test schedules for their embedded-core based system chips. Such a tool will
lead to better design decisions and high productivity. Consequently, it will also reduce
time-to-market.

The basic requirements for such a tool are as follows:

� For a given SOC, the tool should design a test architecture such that the overall
SOC test time is minimized. This objective will also help in fitting the test-data
volume for the SOC on the target ATE.

� In order to have better acceptance by designers, the tool should be easy-to-use
and must be able to satisfy the preferences of the user based on practical con-
straints such as layout, design hierarchy and other design-specific constraints.

� As both the test architecture design as well as test scheduling problems are
���

hard, the tool should be efficient in terms of computing time or run time.

1.6 Original Contributions

The following original contributions have been described in this thesis:

� For the core-test wrapper, the problem of wrapper design is shown to be equiv-
alent to the well-known Multi-Processor Scheduling (MPS) problem and hence
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it is
���

hard. Therefore, it is shown that various heuristic algorithms available
for MPS problem can be used to design an optimal wrapper around a core.

� A lower bound on the overall SOC test time is defined and three different types
of idle-bits are identified that make the lower bound unachievable in most of the
practical cases.

� For test architecture design, a novel efficient and effective heuristic algorithm
TR-ARCHITECT is presented. For a given SOC, TR-ARCHITECT computes an
optimized test architecture with respect to SOC test time in a negligible compu-
tational time.

� The basic version of TR-ARCHITECT is extended to include layout constraints
and a SOC-level test-control mechanism.

� To provide full control to the SOC designer over the test architecture design, a
Test Architecture Specification (TAS) language, which can be used to specify a
full or partial test architecture in a concise way, is presented.

� TR-ARCHITECT is extended in order to accommodate a wide range of hard-to-
model user constraints specified by means of a TAS file.

� An improved wrapper architecture for efficient testing of hierarchical cores is
presented. It is shown that by using the proposed wrapper architecture, optimal
test schedules can be obtained for SOCs with hierarchical cores.

1.7 Thesis Outline

The rest of the thesis is organized as follows.

Chapter 2 addresses the issue of wrapper design for embedded cores. The rela-
tionship between wrapper design and test time is addressed. The problem of wrap-
per design is shown to be equivalent to the well-known

���
-hard problem of Multi-

Processor Scheduling (MPS), and various heuristic algorithms to solve this problem
are described. Finally, for a set of cores with a range of TAM widths, the test times
obtained from the various heuristic algorithms are compared.

Chapter 3 addresses the issue of effective and efficient design of SOC test architec-
tures consisting of wrappers and TAMs with respect to overall SOC test time. First, the
problem of test architecture optimization is defined both for SOCs with hard and soft
cores. Next, an architecture-independent theoretical lower bound on the test time of a
given SOC is derived. Furthermore, three types of idle bits are classified and analyzed,
which increase the test time beyond the theoretical lower-bound value. Subsequently,
a novel test architecture optimization algorithm named TR-ARCHITECT is presented.
Finally, experimental results are presented for the ITC’02 SOC Test Benchmarks [MIC].
It is shown that in negligible computational time, TR-ARCHITECT drastically outper-
forms manual best-effort engineering results, and on average also outperforms other
test- architecture design algorithms.
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In Chapter 4, to take layout constraints into account, a simple yet effective TAM
wire-length cost model is presented. The wire length of a TAM depends on its width
and the ordering of cores connected to the TAM. It is shown that the problem of de-
termining an optimal ordering of cores connected to a TAM is equivalent to the well-
known Traveling Salesman Problem (TSP) [GJ79] and a greedy algorithm is presented
to solve it. Subsequently, a layout-driven version of TR-ARCHITECT is presented that
takes into account the layout positions of all cores in the SOC and combines two costs
i.e. SOC test time and TAM wire length into one cost function. Depending on the
weight associated with each cost, TR-ARCHITECT computes an optimized test archi-
tecture.

Chapter 5 deals with the SOC-level test-control mechanism required for the SOC
test architecture. Here, both the time required to set test modes between tests and the
number of dedicated test control pins required for the execution of various tests are con-
sidered. The SOC-level test control is classified into two categories: (1) pseudo-static
test control and (2) dynamic test control. To deal with pseudo-static test control, two
test strategies are presented and their impact on the SOC test schedule are discussed.
For dynamic test-control, a pin-constrained design of test architecture is presented.

Chapter 6 presents a novel Test Architecture Specification (TAS) language that can
be used to specify a full or partial test architecture in a concise way. It is described how
TR-ARCHITECT has been extended in order to accommodate a wide range of user con-
straints. The modified TR-ARCHITECT reads a TAS file as an input. All architecture
parameters specified by the user are considered as constraints, while everything which
is not specified, is left for the tool to optimize for minimal test time, TAM wire length,
etc.

In Chapter 7, the problem of test architecture design for SOCs with hierarchical
cores is addressed. First, a generic hierarchical core model is presented, and four dif-
ferent practical design scenarios that occur between two adjacent hierarchy levels are
identified. Next, the testing requirements for a hierarchical core are discussed and
an improved wrapper architecture that allows efficient testing of hierarchical cores is
presented. By means of experimental results, it is shown that by using the proposed
wrapper architecture, optimal test schedules can be obtained for SOCs with hierarchi-
cal cores.

Chapter 8 concludes this thesis and presents recommendations for future work. In
Appendix A, a list of all relevant parameters used in this thesis is described. Ap-
pendix B presents the computational complexity analysis for the basic test architecture
design algorithm TR-ARCHITECT.





Chapter 2
Core Test-Wrapper Design

2.1 Introduction

A core test-wrapper forms an interface between the core and its system-on-chip (SOC)
environment. The wrapper connects the core terminals both to the rest of the SOC as
well as to the test-access mechanism (TAM). A core test-wrapper provides the switch-
ing between the following three mandatory modes of operation:

1. Normal mode

2. Inward-facing or In-test mode

3. Outward-facing or Ex-test mode.

In the normal mode, the wrapper is transparent and the core is connected to its system
environment. The inward-facing mode is used to test the circuitry inside the core itself.
In this mode, the core wrapper is configured in such a way that the test stimuli can
be applied at the core’s input terminals and the test responses can be observed at the
core’s output terminals. In the outward-facing mode, the circuitry and wiring outside
the core (i.e. interconnect logic) is tested. In this mode, the core wrapper is configured
in such a way that the test stimuli for the interconnect logic after the outputs of this core
can be applied at the core’s output terminals, while the test responses coming from the
interconnect logic before the inputs of this core can be observed at the core’s input
terminals. Apart from these mandatory modes, a core test-wrapper can provide several
optional modes depending upon the requirements. Furthermore, the wrapper may pro-
vide width adaptation in case of a mismatch between the number of core’s terminals
and the TAM width, e.g., by means of serial-parallel and parallel-serial conversion.
This will often be required in practice, since large cores typically have hundreds of
core terminals, while the total TAM width is limited by the number of SOC pins.

This chapter addresses the issue of wrapper design for embedded cores. The wrap-
per is designed in such a way that the access requirements for normal mode, inward-
facing mode, and outward-facing mode are met. The relationship between wrapper

13
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design and test time will be addressed. Furthermore, it will be shown that the wrapper
design problem is equivalent to the well-known

���
-hard problem of Multi-Processor

Scheduling (MPS), and various heuristic algorithms to solve this problem will be pro-
vided. Finally, for a set of cores with a range of TAM widths, the test times obtained
from the various heuristic algorithms will be compared.

2.2 Prior Work

Various wrapper architectures have been described in literature. Marinissen and oth-
ers [MAB

�

98] proposed a core test-wrapper named TestShell that is currently used
within Philips. An example of this TestShell is shown in Figure 2.1(a). The example
core shown in figure has two scan chains, three functional input terminals a[0:2],
and two functional output terminals z[0:1]. In this approach, TAMs are called Test-
Rails. In principle, a TestShell is connected to the same TestRail at both input and
output. Therefore, for a TestShell, the number of incoming and outgoing TAM wires
are equal.

Test Control Block

tc[0:4]

a[0:2]
z[0:1]

B
yp

as
s

TestShell

TestRail−i[0:2] TestRail−o[0:2]

TC−out

scan chain

scan chain

core

TC−in

From chip a[0:2]
z[0:1] to chip

(a) TestShell

To core

Flip flop
To TestRail

From TestRail m1

m2
From chip

(b) Input test cell

Flip flop
To TestRail

From TestRail

From core

m3

m4

To chip

(c) Output test cell

Figure 2.1: Conceptual view of the Philips TestShell [MAB
�

98].

The TestShell consists of multiple test cells, an optional bypass register, a Test
Control Block (TCB), and multiplexers to select various wrapper modes. Test cells
provide controllability and observability at the core terminals. In principle there is
one test cell for every core terminal, although some core terminals do not have a test
cell associated with them. There are multiple types of test cells, e.g., depending on
the direction of core terminals, such as input, output, and bi-directional. Examples of
input and output test cells are shown in Figure 2.1(b) and Figure 2.1(c). The bypass
register allows a TAM to bypass a core and its wrapper, in order to test another core that
is connected to the same TAM. The Test Control Block (TCB) controls the operation
of the wrapper and consists of a shift and an update register. The TCB operation is
controlled from a few direct control inputs (tc [0:4]) to the TCB. The TestShell
supports all three mandatory modes. i.e. normal, inward-facing, and outward-facing.
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Apart from these three, TestShell also supports an additional mode called bypass mode.
In the bypass mode, a core is bypassed in order to test another core that is connected to
the same TAM.

Varma and Bhatia described a very similar wrapper, called Test Collar [VB98].
Apart from different naming for basically similar features, the main difference be-
tween this and the previously described approach is that the Test Collars do not have a
bypass feature. The IEEE P1500 Standard for Embedded Core Test [HM] is an IEEE
standard under development that defines a standard but scalable core test-wrapper ar-
chitecture [MKL

�

02,DZW
�

03]. This wrapper (as shown in Figure 2.2) is very similar
to the previously described TestShell and Test Collar.

Wrapper Instruction Register

From chip a[0:2]
a[0:2]

z[0:1]

WPO[0:2]

m6
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m3
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Bypass

core

scan chain

scan chain

P1500 Wrapper

WPI[0:2]

WSC[0:6]

WSOWSI

z[0:1] to chip

Figure 2.2: Conceptual view of the IEEE P1500 wrapper [DZW
�

03].

The P1500 wrapper has Wrapper Boundary Cells and a Wrapper Instruction Reg-
ister (WIR) with similar functionality to respectively the test cells and the Test Control
Block (TCB) in TestShell. Nevertheless, there are some remarkable differences be-
tween TestShell and the current P1500 proposal, which are as follows.

� Number of TAMs. The P1500 wrapper connects to one mandatory single-bit wide
TAM with input and output terminals as WSI and WSO respectively. Furthermore,
the P1500 wrapper also connects to zero or more multi-bit wide parallel TAMs
with input and output terminals as WPI and WPO. A minimal compliant imple-
mentation has only the single-bit TAM, along which test control values for the
WIR, as well as test stimuli and responses are transported. Envisaged typical us-
age has one multi-bit wide TAM next to the mandatory single-bit wide TAM. In
that case, the bulk test-data access is performed along the multi-bit TAM, while
the single-bit wide TAM is used to program the WIR. Multiple multi-bit wide
TAMs are also allowed.

� TAM widths. For a multi-bit wide TAM, the number of incoming and outgoing
wires do not need to be equal.



16 Chapter 2. Core Test-Wrapper Design

� Bypasses. The two wrappers allow for different types of bypasses. The TestShell
has a TAM-wide bypass. The P1500 wrapper has a bypass for the single-bit
wide TAM (enabled by multiplexer m5 in Figure 2.2), next to the possibility
to bypass the core-internal scan chains while accessing the wrapper boundary
register (enabled by multiplexer m4).

The above publications on core test-wrappers provide general concepts for the
wrapper architecture. All approaches seem to assume that automated generation of
their particular wrapper architecture is possible. However, none of the above publica-
tions details the rules and algorithms required for such wrapper generator tools.

2.3 Wrapper Architecture

The wrapper architecture proposed in this chapter is very similar to the ones described
in the section above. The proposed architecture basically unites the features of both the
Philips TestShell [MAB

�

98] and the IEEE P1500 Wrapper [DZW
�

03]. An example
of the proposed wrapper architecture is shown in Figure 2.3. For test-data access, the
proposed architecture has one or more multi-bit wide TAMs. For each of the multi-
bit wide TAMs, number of wires at the input and the output end of the wrapper are
equal. For174 test-control access, the proposed architecture has one single-bit wide
TAM, through which instructions are loaded into the WIR. This TAM can also be used
to transport test stimuli and responses. A minimal implementation of the above equals
the minimal implementation as proposed by the IEEE P1500.
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a[0:2]
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to chip
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Figure 2.3: An example of the proposed wrapper architecture.

The wrapper contains a wrapper cell per core terminal. The type of wrapper cell
required for a core terminal depends primarily on the type of core terminal and its
corresponding (test) access requirements. In the wrapper, only digital synchronous
terminals are connected to wrapper cells. For both the analogue and asynchronous sig-
nals, both the Philips [MAB

�

98] as well as the IEEE P1500 [DZW
�

03] have proposed
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‘direct test access’, i.e. these signals pass the wrapper un-hindered and can for example
be directly connected to IC pins. Furthermore, for bi-directional digital synchronous
terminals, one can split a bi-directional terminal into a separate input, output, and direc-
tion control terminals. For the direction control terminal, direct test-access is assumed,
while for input and output terminals wrapper cells are required. Example of input and
output wrapper cells are shown in Figure 2.1(b) and Figure 2.1(c) respectively.

The wrapper cells and core-internal scan chains are connected into TAM chains in
between the TAM inputs and outputs in order to meet the access requirements. In the
proposed architecture, an optional bypass is allowed for every single wire in a TAM.
This includes the optional bypass for the multi-bit wide TAM in the Philips TestShell,
as well as the bypass for the single-bit TAM, which is mandatory in the IEEE P1500.
In Figure 2.3, the top multi-bit bypass represents the bypass for the multi-bit wide
TAM, while the bottom one-bit bypass represents the bypass for the single-bit wide
TAM. Furthermore, in the proposed wrapper architecture optional bypasses of core-
internal scan chains (not shown in Figure 2.3) are allowed. Following the Philips and
P1500 wrapper examples, our bypasses contain not just wires and/or buffers, but also
a register, which allows for concatenating an arbitrarily large number of cores in the
same TAM chain.

A Wrapper Instruction Register (WIR), equivalent to the WIR in P1500 and the
TCB of Philips, provides pseudo-static control signals to the wrapper itself. These
signals control the mode of the wrapper by setting control signals of wrapper cells
and various multiplexers. The WIR is implemented using a shift and update register.
Via a single-bit interface, a new test control instruction is shifted into the WIR, which
becomes active only after clocking it into the update register. The update register pre-
vents invalid instructions from being given to wrapper and core while shifting in a new
instruction.

2.4 Problem Definition

Wrappers are used both for core internal and core external testing. Optimizing the
wrapper with respect to the test time for the core internal testing might lead to con-
flicting requirements with respect to optimization of the test time for the core external
testing. In the typical case, the core internal circuitry is much larger than the circuitry
that is used to interconnect the cores. Therefore, the test-data volume involved in core
internal testing is much larger than the test-data volume for core external testing. More-
over, in many cases, the wrapper is designed by the core provider to whom the circuit
environment in which the core will be used is not known. Hence, data about the core
external test is not available at the time of the wrapper design. Therefore, priority is
given to optimizing the test time for the core internal testing.

One can distinguish between the problems of wrapper design for SOCs with hard
cores versus soft cores. Hard cores are those, for which the scan insertion has been
already carried out. For hard cores, the number and length of the core-internal scan
chains are fixed and cannot be changed while designing the wrapper. Examples of such
cores are third-party black-boxed (layout) IP cores and encrypted cores, for which the
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implementation, including the core-internal scan chain design, is fixed. Soft cores are
those for which the scan insertion is yet to be done. For these cores, the number and
length of the core-internal scan chains are not decided yet, or can still be changed while
creating the the wrapper design. Examples of such cores are in-house design cores and
third-party firm cores before scan insertion.

The problem of designing a wrapper around a hard core can be formally defined as
follows:

[CTWD] CORE TEST WRAPPER DESIGN
Instance: Given a core � with a number of functional input terminals

���
, a number of

functional output terminals � � , a number of functional bi-directional terminals � � , a
number of test patterns � � , a set of scan chains � and for each scan chain �
	��
� ,
its length ������	�� . Furthermore, a number ������� given is that represents the maximum
number of TAM wires allowed to connect to the core.
Objective: Determine a wrapper design for the core such that the overall core internal
test time � � (in clock cycle) is minimized. �

Once the appropriate wrapper cells are selected for a given core, the remaining
task in order to complete the wrapper design is to make the interconnections between
the wrapper cells, the core internal scan chains, and the TAM wires. This activity
is referred to as TAM chain design, and the elements (i.e. wrapper cells and scan
chains) that make up a TAM chain are called TAM chain items. Test access is already
guaranteed if all TAM chain items are accessible from the TAM wires.

In case of the wrapper design for a soft core, the wrapper design problem reduces
to a simple balanced distribution of wrapper input cells, scan flip flops and wrapper
output cells over the available TAM wires. As all the TAM chain items are of one-bit
size, this problem is very trivial and can be solved optimally. Therefore, this problem
will not be addressed here.

2.5 TAM Chain Design

The activity of TAM chain design consists of two parts:

1. Ordering the TAM chain items within TAM chains,

2. Partitioning the TAM chain items over the given TAM chains.

In this section, it will be shown that the partitioning over and ordering within TAM
chains of the items has a large impact on the size of the resulting test time.

2.5.1 Ordering of TAM Chain Items

First, lets start with the test time � � of a core � . Per test pattern, test stimuli need to be
loaded into the wrapper input cells as well as into the core internal scan chains. The
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time required to load the stimuli for a pattern is called scan-in time � � � . Similarly, test
responses need to be unloaded from the core internal scan chains as well as from the
wrapper output cells. The time required to unload the responses for a pattern is called
scan-out time � � � . In practice, the scan-out time for a pattern is pipelined (in time) with
the scan-in time for the next pattern. This reduces test time.

Considering the pipelining as mentioned above, the test time � � for a core � can be
derived as [GM01]:

� ���������
	���
 ��� � ��� � � � ����� � ����	���� ��� � ��� � � � � (2.1)

where � � represents the total number of test patterns for core � and should be greater
than zero. Note that this formula is valid even for non-scan-testable cores, for which
� � � � � � � ���

.

From the set of all TAM chain items, two non-disjunctive subsets are involved in
the loading and unloading of test patterns. The wrapper input cells and the core internal
scan chains (referred to as input items) participate in the loading of test patterns. The
wrapper output cells and the core internal scan chains (referred to as output items)
participate in the unloading of test patterns. In order to reduce � � � and � � � , it is best
to order the items in any TAM chain such that the input items are at the head and the
output items are at the tail of the TAM chain. Given the fact that core internal scan
chains are in both sets, they should be in the middle of a TAM chain.

...scan chain 1...i1 i2 ix ...o1 o2 oz

wrapper input cells wrapper output cellsscan chains

scan chain bypass

TAM chain bypass

scan chain y

bypass reg

Figure 2.4: Ordering of TAM chain items (optional items are dashed).

Figure 2.4 shows a generic template for a single TAM chain. The items are ordered
such that the TAM chain contains subsequently (1) wrapper input cells, (2) core internal
scan chains, and (3) wrapper output cells. Optionally one can provide a bypass for the
core internal scan chains. These scan chains do not take part in the core external testing.
At the cost of a multiplexer and an additional control wire, one can reduce the length
of the access chain by bypassing them during the core external tests.

Also optionally, one can provide a bypass for the entire TAM chain in the wrapper.
Such a bypass is particularly useful if multiple cores are concatenated into a single
TAM, such as is the case in the daisychain architecture as described in [AM98]. Cores
which are not tested, can be bypassed in order to reduce the access length to cores
which are tested. As multiple cores are concatenated into one TAM, this might lead to
long TAM wires and hence long propagation delays. In order to prevent propagation
delays from becoming too long and to contribute to the plug-and-play character of the
proposed wrapper, it is proposed to equip the wrapper bypass with a register.
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2.5.2 Partitioning of TAM Chain Items

The TAM width ����� � is the result of a trade-off between its transport capacity and
associated costs w.r.t. additional IC pins, silicon area, etc. [MAB

�

98]. Therefore, in
many practical cases, the total number of TAM chain items is much larger than the TAM
width. If this is the case, it is required that the set of TAM chain items is partitioned
into a number of subsets equal to the number of available TAM wires.

The partitioning of TAM chain items over TAM wires determines the scan-in time
� � � and scan-out time � � � for core � , and hence determines its test time � � . As can be
derived from Equation (2.1), the test time is minimal if the maximum of � ��� and � � �
is minimal. Hence, one should look for a partition of the TAM items that achieves
this minimal test time. The partitioning problem can be formulated as finding an as-
signment of all TAM chain items to one of the available TAM chains such that the
maximum of scan-in and scan-out test times is minimized. This problem can be for-
malized as follows:

[PTCI] PARTITIONING OF TAM CHAIN ITEMS
Instance: Given a set ��� � �������������
	 ���
�
�������
� � of wrapper input cells, each
wrapper input cell having a length � � ��� 	 � � �

. Given a set � ��� � ��� � 	 �
�
����� ��� ��� � of
core internal scan chains, where scan chain � 	 has length � ��� 	 � . Given a set ��� �
������� ������	 �
�
����������� � of wrapper output cells, each wrapper cell having a length
� � ��� 	�� � �

. Furthermore is given a set of � ��� � identical TAM chains. It is defined
that for any ������� � �!�"��� , � �#� � �%$ �'&'( ���#) � . A TAM partition is a
partition

� � �+* � �,* 	 �
���
���,*.-0/0132 � of �4�5� �6�7��� into � ��� � disjoint sets, one for
each TAM chain. The input set is defined as

�98 	 �:* 	<;=��� . Likewise, the output set
is defined as

�?>A@ 	 ��* 	<;=��� . The scan-in length for TAM partition
�

is defined by
� � � � � � 	���
0�CB 	 B - /D1E2 � � �F8 	 � . The scan-out length for TAM partition

�
is defined by

� � � � � � 	�� 
G�CB 	 B - /D1E2 ��� �?>A@ 	 � .
Objective: Find an optimal TAM partition

�IH
such that

	�� 
 � � � � �JH � � � � � �JH ���LK	���
 ��� � � � � � � � � � � � for all partitions
�

of �4�M� �N�O��� into � ����� subsets. �
To solve the PTCI problem, a three-step approach is proposed.

1. Assign the core internal scan chains in � to TAM chains, such that the maxi-
mum sum of scan lengths assigned to a TAM chain is minimized. The resulting
partition is named

� � .
2. Assign the wrapper input cells in ��� to TAM chains on top of

� � , such that the
maximum scan-in time of all TAM chains is minimized.

3. Assign the wrapper output cells in ��� to TAM chains on top of
� � , such that

the maximum scan-out time of all TAM chains is minimized.

Note that wrapper input cells and wrapper output cells are of one-bit length, as both
contain only one flip flop each. Therefore, Steps 2 and 3 of the proposed approach can
yield an optimal solution in linear computation time, if Step 1 was solved to optimality.
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Step 1 is the problem of partitioning of scan chains over TAM chains, and can be
formalized as follows:

[PSC] PARTITIONING OF SCAN CHAINS
Instance: Given a set � ��� � � � � 	 ���
��� � ��� ����� of core internal scan chains, where scan
chain � 	 has length � ��� 	 � , and a set of � ��� � identical TAM chains. A scan partition is
a partition

� � �+* � �,* 	 �
���
���,*.-0/0132 � of � into � ����� disjoint sets, one for each TAM
chain. TAM chain

�
,
� K � K ����� � , contains all scan chains in

* 	 . The scan length
for scan partition

�
is defined by � � � � � 	�� 
 ��B 	 B -0/0132 � � * 	�� , where for any � � � ,

���#� � �L$ ��� &'( � ��� 	�� .
Objective: Find an optimal scan partition

� H
, i.e. one that satisfies � � �IH � K � � � � for

all partitions
�

of � into � ����� subsets. �
The PSC problem is equivalent to the well-known problem of Multi-Processor

Scheduling (MPS), sometimes referred to as Bin Design [JGJ78]. In the MPS prob-
lem, � independent tasks have to be non pre-emptively scheduled on � identical par-
allel processors with the objective of minimizing the ‘makespan’, i.e. the total time
span required to process all given tasks. A formal version of the MPS problem is given
below.

[MPS] MULTI-PROCESSOR SCHEDULING
Instance: Given a set

� � �+@ � � @ 	 ���
�
��� @�� � of tasks, where task
@ 	 has execution

length � � @ 	�� , and a set of � identical processors. A schedule is a partition
� �

��* � �,* 	 �
���
���,*
	 � of
�

into � disjoint sets, one for each processor. Processor
�
,� K � K�� , executes the tasks in

* 	 . A finishing time for schedule
�

is defined
by � � � � � 	�� 
D��B 	 B 	 ��� * 	 � , where for any �%� � , � �3� � �:$�
 &'( � � @ � .
Objective: Find an optimal processor schedule

�7H
, i.e. one that satisfies � � �IH � K�� � � �

for all partitions
�

of
�

into � subsets. �
It is not surprising that there is a direct one-to-one mapping between the PSC and

MPS problems. In wrapper design, tasks are formed by the scan chains. The execution
length of a task is equivalent to the length of a scan chain. The set of identical proces-
sors � corresponds to the set of identical TAM chains � ����� . Note that the equivalence
of the two problems is also emphasized by the way they are formalized above. The
MPS problem is

���
-hard [GJ79]. Because of the one-to-one mapping between PSC

and MPS, it is claimed that the PSC problem is also
���

-hard.

2.6 Proposed Algorithms

In literature, various polynomial-time algorithms have been proposed for MPS that
yield near-optimal schedules. A polynomial-time algorithm is evaluated by its worst-
case performance ratio, which represents the possible relative error over all possible
instances of the problem. A worst-case performance ratio of � means that for every
problem instance, the algorithm delivers a solution that is at most � times the optimum.
Naturally ��� �

and the closer it is to 1, the better.
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Graham [Gra69] proposed the Largest Processing Time (LPT) algorithm, that first
sorts the tasks such that � � @ � ��� � � @ 	 ��� �
�
� � � � @ � � and then assigns the tasks in suc-
cession to the minimally loaded processor. LPT has a time complexity of � � ������� � �
���	�
� � � . Graham proved that the worst-case performance ratio for LPT is � ��


�
� 	 .

Algorithm 2.1 gives the pseudo-code of LPT, expressed in the variables of PSC.

Algorithm 2.1 [LPT]

(assume � ��������� ��� )
1 sort � such that � ��� � ��� � ��� 	 ��� �
�
� � ������� ��� � ;
2 for

�
:= 1 to � ����� do

* 	 := � 	 ; od;
3 for

�
:= � ��� � ���

to � ��� do
4 select � � ��� � � � *�� � � 	���� ��B �=B - /0132 ��� *.� ��� ;
5

*��
:=
*�� � � � 	 � ;

6 od;
7 return

	���
D�CB �'B - /D1E2 � � * � � ;
The Bin Packing problem can be seen as the dual version of the Bin Design (=

MSP) problem. In Bin Design, a fixed number of bins is given, for which the minimum
capacity needed to pack a set of given items has to be determined. In Bin Packing, the
capacity of the bins is fixed, and the number of bins needed to pack all items has to be
determined. An alternative approach to solve MPS is to utilize a bin-packing heuristic
in conjunction with a search over the bin capacity � to find the minimum capacity
such that all � items (tasks) will fit into (onto) the � bins (processors). For a given bin
capacity, various bin-packing heuristics have been described in literature. Two very
commonly used heuristics are First Fit Decreasing (FFD) [Joh73,JDU

�

74] and Best Fit
Decreasing (BFD) [Joh73, JDU

�

74].

Assume that the tasks have been sorted such that � � @.� ��� � � @ 	 ��� �
��� � � � @ � � .
The FFD heuristic assigns the tasks in succession to the lowest indexed processor which
can complete the task within its capacity. Algorithm 2.2 gives the pseudo-code of FFD,
expressed in the variables of PSC.

Algorithm 2.2 [FFD ��� � ]
(assume � is sorted such that ����� � ��� ����� 	 ��� ���
� � � ����� ��� � )
(assume initially

* � � �
for all

�
)

1 for
�

:= 1 to � ��� do
2

�
:= 1;

3 while ��� *�� � � � ��� 	 � �!� do
4

�
:=
� � �

;
5 od;
6

*"�
:=
*"� � � 	 ; ��� *�� � := ��� *�� � � ����� 	 � ;

7 od;
8 return

	���
 ��� � *��$#�%� � ;
Unlike the FFD, the BFD heuristic assigns the tasks in succession to the processor

which is maximally loaded and can complete the current assigned tasks along with the
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task in question within its capacity. In case there are more than one such processor, the
processor with the lowest index is selected. Both FFD and BFD have the same worst-
case performance ratio. Johnson [JDU

�

74] proved that the worst-case performance of
FFD is

���� .

To decide on the capacity of the processor, the algorithm should use some search
method. The MULTIFIT method, proposed by Coffman et al. [JGJ78], uses a bisection
search over the bin capacity. Starting with known upper and lower bounds on the capac-
ity � , at each step FFD is carried out for a value of � midway between the current upper
and lower bounds. If FFD ��� � � ������� , � becomes the new lower bound; if FFD � � � K
� ����� , � becomes the new upper bound. Initial lower and upper bounds on � are given
as ��� � 	���
������ �
	- /D1E2 � 	���
 � � & � � ��� 	���� and ��
 � 	���
�� 	�� ��� �
	- /D1E2 � 	���
 � � & � ����� 	���� re-
spectively [JGJ78], where � � � � represents the summed length of all scan chains in set
� .Algorithm 3 gives the pseudo-code of MULTIFIT, expressed in the variables of PSC.

Algorithm 2.3 [MULTIFIT]

(assume � is sorted such that � ��� � ��� � ��� 	 ��� �
�
� � ������� ��� � )
1 � � :=

	���
������ �
	-0/0132 � ����� � ��� ; � 
 :=
	���
�� 	�� ��� �
	- /D1E2 � ����� � ��� ;

2 for
�

:= 1 to � do
3 if � � #� � 
 then
4 � := ����� � ���	 � ;
5 if FFD � � � � � ��� � then ��� := � ;
6 else ��
 := � ; fi;
7 fi;
8 od;
9 return

�
;

Compared to LPT, the worst-case performance ratio of MULTIFIT is better, at the
expense of additional computation time. It is important to note that this does not mean
that MULTIFIT will have a better performance in all cases. Empirical tests show that in
many cases LPT performs better than MULTIFIT. The time complexity of MULTIFIT is� � ������� � � � ������� � � , where � denotes the number of iterations in the binary search.
Coffman et al. [JGJ78] showed that MULTIFIT has a worst-case performance ratio of�F� ��� � �

�	 � � . Later, Friesen [Fri84,FL86] proved that the worst-case performance ratio
is even better, viz.

�F� � � � �
�	 � � .

A problem with the binary search of MULTIFIT is that it can have the following
anomalous behavior. If the tasks do not fit onto � processors with capacity � , they
may still fit onto � processors with a capacity smaller than � . Hence, whereas binary
search is useful to search quickly in a large search space, at the expense of additional
computation time, linear search might obtain better results. Note that in many practical
cases of wrapper design, the additional computation time required for a linear search
will be acceptable as the linear search may provide a better solution and hence improve
the test time. Based on a proposal by Lee & Massey [LM88], who use LPT to obtain
a starting schedule for MULTIFIT, here a combination of LPT and LINEARSEARCH
is suggested to design the proposed wrappers, if the range of � values is of accept-
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able size. Algorithm 4 gives the pseudo-code of the resulting COMBINE algorithm,
expressed in the variables of PSC.

Algorithm 2.4 [COMBINE]
�

1 � :=
$ �	�� � ��� � � 	- /D1E2 ;

2 � := LPT;
3 if � � �F� � ��� then
4 � 
 := � ; � � := � ���9) �#��� � �� 


�
� - /D1E2 � � � � � � � � ;

6
�

:= ��� ; FFD � � � ;
7 while

� K ��

	 FFD � � � � � ����� do
8 FFD � � � ; � :=

� � �
;

9 od;
10 fi;
11 return

�
;

It is important to note that although both MULTIFIT proposed by Coffman et al.
[JGJ78] and COMBINE proposed here, use FFD for bin packing. However, as BFD
utilizes more sophisticated partitioning rule than FFD, the use of BFD instead of FFD
might obtain better results in some cases.

2.7 Experimental Results

Let us first consider wrapper design for an example core � . The example core � has
five functional inputs a[0:4], six functional outputs z[0:5], and six internal scan
chains of lengths resp. 25, 15, 18, 10, 5, and 8 flip flops. Its wrapper needs be connected
to a three-bit wide TAM. Furthermore, for all TAM wires, the wrapper should have
TAM chain bypass.

As the first step in a wrapper design procedure is the selection of appropriate wrap-
per cells, five wrapper input cells and six wrapper output cells are required for this
case. For the PSC problem, the LPT algorithm yields

* � � � ��� ��� � , * 	 � � ��
 ��
 � ,
and
* � � � ��� ��� � � . Hence, the longest scan-chain concatenation has 30 bits. The

COMBINE algorithm improves this to the optimal partition
*��� � � ��� � , *��	 ������
 ����� � ,

and
*��� � ����� ��
 ��� � with a maximum length of 28 bits. Table 2.1 shows an optimal

ordering and partitioning of TAM items for core � .

Table 2.1: Optimized ordering and partitioning of TAM items for core � .

TAM Wire TAM Input Items
TAM Output Items

TAM[0]
� � ��� ��� ��� � � ��� � ��� ��� ��� ��� ��� �

TAM[1]
� � � ����
 ����� � ��� �

TAM[2]
� � � ��� ��
 ��� � � �

1Lee and Massey [LM88] proved that � is optimal if ������� ��� � . Hence, if in the COMBINE algorithm,
LPT already yields this result, LINEARSEARCH does not need to be executed.
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Wrapper Instruction Register

multi−bit
bypass

scan chain 25 FF

scan chain 15 FF

scan chain 18 FF

scan chain 10 FF

scan chain 5 FF

scan chain 8 FF

a[0:4] z[0:5]

WPO[0:2]

a[0:4] z[0:5] To chipFrom chip

m1

m2

m3

WSI WSO

Designed Wrapper

Core A

WPI[0:2]

WSC [0:6]

Figure 2.5: Core � with its designed wrapper.

For the optimal partition shown in the table, both the scan-in and scan-out time for
core A are 29 bits. Figure 2.5 shows the corresponding wrapper for core � , including
TAM chain bypass.

Next, experimental results are presented for the various wrapper design algorithms
described in this chapter. As benchmarks, the set of ITC’02 SOC Test Benchmarks [MIC,
MIC02] were used. This benchmark set contains twelve SOCs and every SOC contains
a number of cores. Some of the cores inside the benchmark SOCs do not have any scan
chains. Therefore the problem of PSC does not even exist for these cores. To show
the impact of the wrapper design algorithm on core test time, experimental results for
four large cores taken from the three out of twelve SOCs are presented. These cores
are Module 26 from SOC p22810, Module 18 from SOC p34392, and Modules 1 and
13 from SOC p93791. Table 2.2 shows the test characteristics of these cores.

A test time comparison for five different wrapper design algorithms will now be
presented. These algorithms are (1) LPT, (2) MULTIFIT using BFD as a subroutine,

Table 2.2: Test characteristics of four selected cores [MIC02].

Module Number of Scan Chain Length
ID Inputs Outputs Bi-dirs. Scan chains Patterns Min. Avg. Max.
26 66 33 98 31 198 371 400 181
18 175 212 0 14 198 469 729 745
1 109 32 72 46 409 148 168 409
13 111 31 72 31 173 208 219 194
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(3) MULTIFIT using FFD as a subroutine, (4) COMBINE using BFD, and (5) COMBINE
using FFD. For all cores and all values of TAM width � ��� � , the computation time for
all five algorithms was less than one second. Fifty iterations were used in the binary
search step of MULTIFIT � � � � � � . For Module 26 from SOC p22810, Figure 2.6
shows the test time results obtained from these five wrapper design algorithms for a
range of TAM widths.

3 4 5 6 7 8 9 10 11 12 13
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LPT
MultiFit with BFD
MultiFit with FFD
Combine with BFD
Combine with FFD

Module 26, SOC p22810

Figure 2.6: Test time comparison for Module 26, SOC p22810 [MIC02].

From Figure 2.6, one can see that the test time for a core shows a ‘staircase’ behav-
ior. This is due to the fact that the wrapper design procedure involves the partitioning of
the set of scan chains over the TAM wires. For increasing TAM width � ����� , the scan
chains get redistributed over the TAM wires, resulting in another partitioning. How-
ever, the scan-in/out time per test pattern (and hence the overall test time for the core)
only decreases if the increase in TAM width is sufficient to remove the bottleneck in
scan time.

To understand this, consider a core with four internal scan chains, each having a
length of 100 flip flops. If the TAM width assigned to this core is two ( � ��� � � �

),
then the scan-in/out time per test pattern is 200 clock cycles. Now if the number of
TAM wires is increased to three ( � ����� � �

), the scan time does not decrease. This
phenomena leads to ‘staircase’ behavior in case one plots the test time of a core as
function of its TAM width. For Module 26 with

��� K � ����� K � �
(not shown in

figure), both the scan-in and scan-out time for the module are 798 clock cycles (using
COMBINE with FFD). Only at � ����� � � �

, both the scan-in and scan-out time reduce
to 733 clock cycles and the core test time reduces from 145417 to 133405 clock cycles.
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Now if one compares the results obtained from various wrapper design algorithms,
one can easily see that for this core, the results obtained from the COMBINE algorithm
either with FFD or BFD are slightly better or equal to the results obtained from LPT. This
can be understood from the fact that the COMBINE algorithm takes the LPT solution
as a starting point. One can also see that the results obtained from COMBINE are
better or equal to the results obtained from corresponding MULTIFIT. This is due the
fact that MULTIFIT uses a binary search which can have anomalous behavior, while
COMBINE starts with LPT and uses a linear search. Here, COMBINE with FFD results
in the minimum test time for all cases.

Figure 2.7 shows the test time results obtained for Module 18 from SOC p34392.
Except for � ��� � � �

, the results are similar to the ones obtained for previous case
(Module 26, SOC p22810). For � ����� � �

, algorithms with BFD work better than
the ones with FFD. Figure 2.8(a) and Figure 2.8(b) show the test time results obtained
for Module 1 and Module 13 from SOC p93791 respectively. For these two cores,
COMBINE with FFD always results in the minimum test time for all cases.
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Figure 2.7: Test time comparison for Module 18, SOC p34392 [MIC02].

It is important to note here that even if there are small differences in the test times
obtained from the various algorithms, selecting the algorithm that usually results the
minimum test time is very important. It is due to the fact that a typical industrial
SOC [MIC02] usually contains a number of cores. If for every core in the SOC, there
is a small difference in the test time. In the worst-case, these small differences can add
up and result in large SOC test time. As the COMBINE with FFD on an average results
in the minimum test time, this algorithm is suggested for the core test-wrapper design.
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(a) Module 1, SOC p93791
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Figure 2.8: Test time comparison for the two cores in SOC p93791 [MIC02].
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2.8 Summary

Standardized, but scalable core test-wrappers play an important role in the test inter-
operability of embedded cores from distinct sources. In this chapter, a new wrapper
architecture that unites the features of the TestShell of Philips and the IEEE P1500
wrapper was proposed. It provides facilities for functional access, as well as access for
core internal and core external testing. The wrapper consists of wrapper cells and a
Wrapper Instruction Register (WIR).

The interconnections of wrapper cells and core internal scan chains determine the
test time of the core. Ordering these TAM chain items, together with the use of several
optional bypasses, can reduce the test time. It was shown that the partitioning of TAM
items over TAM chains such that test time is minimized, is equivalent to the

���
-

hard problem of Multi-Processor Scheduling. Several heuristic algorithms to solve the
partitioning of TAM items were described.

The proposed wrapper architecture is illustrated by means of an example. Finally,
for a set of cores, a comparison of the test times obtained from the various wrapper de-
sign heuristics were presented. Experimental results show that the heuristic COMBINE
in combination with FFD on an average performs better than others. Therefore in the
sequel of this thesis, this algorithm will be used for core test-wrapper design.





Chapter 3
Test Architecture Design

3.1 Introduction

To design a test architecture for an SOC with a given set of cores and a given number
of test pins, the SOC designer has to determine the following: (1) TAM type, (2) the
number of individual TAMs, (3) the widths of these TAMs, (4) the assignment of cores
to TAMs, and (5) the wrapper design for each core. These parameters need to be
selected such that the total number of pins used to connect the TAMs wires does not
exceed the given number of test pins, while the overall test cost is minimized. The test
architecture has a large impact on two key parameters in the overall SOC test cost: the
required vector-memory depth per tester channel and the test time of the SOC.

For a small SOC, having only a few cores and a few test pins, a good test architec-
ture can be designed manually. However, the complexity of designing an architecture
increases exponentially with the increase in the number of cores and test pins. Iyen-
gar et al. [ICM01] proved that the problem of designing an optimal test architecture
is
���

hard, indicating that the required computing time increases exponentially with
the problem instance size. Therefore, good heuristic algorithms which can efficiently
search the solution space of feasible architectures and yield a near-optimal test archi-
tecture in a good reasonable compute time are required.

In this chapter, the issue of effective and efficient design of SOC test architectures
consisting of wrappers and TAMs with respect to overall SOC test time is addressed.
First, the problem of test architecture optimization is defined both for SOCs with hard
and/or soft cores. Next, an architecture-independent theoretical lower bound on the
test time of a given SOC is derived. Furthermore, three types of idle bits are classified
and analyzed that increase the test time beyond the theoretical lower bound value. Sub-
sequently, a novel test architecture optimization algorithm named TR-ARCHITECT is
presented. Finally, experimental results are presented for the ITC’02 SOC Test Bench-
marks [MIC, MIC02]. The test time results of TR-ARCHITECT are compared with
those obtained by other methods and the theoretical lower bound. It is shown that in
negligible compute time, TR-ARCHITECT drastically outperforms manual best-effort
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engineering results and on average, also outperforms other-test architecture design al-
gorithms.

3.2 Prior Work

3.2.1 Test Architecture Design

In the design of test architectures, one can distinguish two issues: (1) the TAM type,
and (2) the architecture type.

Two different TAM types, the test bus and the TestRail, have been proposed in
the literature. In the test bus TAM as presented by Varma and Bhatia [VB98], cores
connected to the same test bus can only be tested sequentially. The mutual exclusion for
test bus access between multiple cores can be implemented by means of multiplexers
and tri-state elements. The drawback of this TAM is that testing of logic between the
cores (interconnect-logic) is difficult or impossible. This is due to the fact that in a test
bus only one core wrapper can be accessed at a time, while that testing of interconnect-
logic between any two cores requires access to both their wrappers simultaneously

The TestRail TAM as presented by Marinissen et al. [MAB
�

98], allows cores that
are connected to the same TestRail to be tested simultaneously as well as sequentially.
The TestRail can be implemented by simply concatenating the scan chains of the var-
ious cores and their wrappers. To minimize access time to cores, bypasses (optional)
can be added around cores. In order to allow any number of cores to be connected
to a TestRail, bypasses can be implemented as one-bit shift-registers. The advantage
of a TestRail over a test bus is that it allows access to multiple or all cores wrappers
simultaneously, which facilitates testing of interconnect-logic between the cores.

From literature, one can distinguish at least three different types of architectures:
(1) the serial architecture, (2) the parallel architecture, and (3) the hybrid architecture.
Example instances of the three architectures are shown in Figure 3.1.
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Figure 3.1: Examples of SOC test architectures.

The serial architecture has only one TAM, which connects to all cores. In Fig-
ure 3.1(a), a serial architecture with TestRail TAM is shown. The shown TestRail is
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connected to three cores � , � , and � . In this figure, optional registered-bypasses
around the cores are also shown. The multiplexing and daisychain architectures in
[AM98] are examples of such architectures. The multiplexing architecture has only
one test bus TAM, while the daisychain architecture has only one TestRail TAM.

The parallel architecture shown in Figure 3.1(b) has a private TAM for every core.
This architecture corresponds to the distribution architecture in [AM98]. As there is
only one core per TAM, the TAM type is actually irrelevant in this type of test archi-
tecture. As each TAM needs to consist of at least one wire, this architecture requires
that there are at least as many TAM wires as the number of cores. When designing
this architecture, the partitioning of the total number of available TAM wires over the
various cores has a large impact on the resulting test time.

The hybrid architecture is the hybrid combination of serial and parallel architec-
tures. In this architecture, there are one or more TAMs, which each connects to one
or more cores. This architecture is in fact a generalization, of which the serial and the
parallel architectures are the two extremes. In Figure 3.1(c), a hybrid architecture with
two TestRail TAMs is shown. One TestRail is connected to cores � and � , while the
other TestRail is connected to core � .

Test architectures based on the test bus TAM only support serial test schedules;
the cores connected to a common test bus are tested in an arbitrary, but sequential
order [GM02c]. Parallelism only exists in case of multiple test buses, which operate in
parallel. Test architectures based on the TestRail TAM support both serial and parallel
test schedules. In a parallel test schedule, one starts to test all cores connected to a
common TestRail in parallel. This continues until one of the cores runs out of test
patterns. Then the bypass for this core is activated, while the testing of the remaining
cores continues. This process is repeated until all cores connected to the TestRail
have been completely tested. Figure 3.2(a) shows an example of a hybrid TestRail
architecture with three TestRails. Figure 3.2(b) shows a possible corresponding serial
test schedule, while Figure 3.2(c) shows a possible corresponding parallel test schedule.
In Figure 3.2(b) and (c), the horizontal axis represents the test time, while the vertical
axis represents the TestRail width. The rectangle boxes represent the tests of the cores.
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Figure 3.2: Example hybrid TestRail architecture with corresponding test schedules.
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3.2.2 Test Architecture Optimization

Most test architecture optimization algorithms published so far, have concentrated on
hybrid test bus architectures. Chakrabarty described an architecture optimization ap-
proach that minimizes test time through Integer Linear Programming (ILP) [Cha00b]
and then extended the optimization criteria with place-and-route and power constraints
[Cha00a]. Edabi and Ivanov replaced ILP by a genetic algorithm [EI01]. In [HCT

�

01],
Huang et al. mapped the design of test architectures to the well-known problem of
two-dimensional bin packing and used a heuristic algorithm to solve it. Iyengar et
al. [ICM02a] solved the problem of integrated TAM/wrapper design by using ILP and
exhaustive enumeration. In [ICM02b], the same authors presented efficient heuristics
for the same problem. A heuristic optimization algorithm based on rectangle packing
for a test bus architecture with one single test bus that is allowed to fork and merge was
presented in [ICM02d]. In [ICM02c], the same authors extended this work by includ-
ing precedence (ordering constraints between tests), pre-emption (tests can be halted
and resumed later), and power constraints.

Two heuristic algorithms for co-optimization of wrappers and TAMs for hybrid
TestRail architectures are described in [GM02b]. The algorithms in [GM02b] have a
limitation that the total TAM width should be greater than or equal to the number of
cores inside the SOC. Therefore the approaches presented in [GM02b] are not suitable
for small TAM widths.

3.3 Problem Definition

One can distinguish between the problems of test architecture design for SOCs with
hard cores versus soft cores. Hard cores are those, for which the scan insertion has been
already carried out. For hard cores, the number and length of the core-internal scan
chains are fixed and cannot be changed while designing the SOC-level test architecture.
Soft cores are those for which the scan insertion is yet to be done. For these cores, the
number and length of the core-internal scan chains are not decided yet, or can still be
changed while creating the SOC-level design.

The problem of designing a test architecture for an SOC with hard cores can be
formally defined as follows. A list of all relevant parameters used in this thesis is
described in Appendix A.

[TADHC] TEST ARCHITECTURE DESIGN WITH HARD CORES
Instance: Given an SOC with a set of cores � . For each core � � � , the number of
test patterns � � , the number of functional input terminals

���
, the number of functional

output terminals � � , the number of functional bidirectional terminals � � , the number of
scan chains � � , and for each scan chain � , the length of the scan chain in flip flops � ��� �
are given. Furthermore, a number � ��� � is given that represents the maximum number
of SOC-level TAM wires that can be used.
Objective: Determine a test architecture such that the overall SOC-level test time (in
number of clock cycles) is minimized and � ����� is not exceeded. �
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The TADHC problem is
���

-hard, as was shown in [ICM02a]. A variant of the
above problem is the one that assumes soft cores. In that case, the number of scan
chains � � and the length of these scan chains � ��� � are not given. Instead, for each core �
the number of scan flip flops � � is given, and � � and � ��� � need to be determined such
that � ��� $����� � � � ��� � .

The problem of designing a test architecture for an SOC with soft cores can be
formally defined as follows:

[TADSC] TEST ARCHITECTURE DESIGN WITH SOFT CORES
Instance: Given all parameters as specified in the problem TADHC, and for each core
� � � instead of the number of scan chains � � and the length � ��� � for each scan chain
� , the total number of scan flip flops � � is given.
Objective: Determine a test architecture such that the overall SOC-level test time (in
number of clock cycles) is minimized and ������� is not exceeded. �

Many practical SOCs will actually contain a mix of hard and soft cores and to adapt
for such cases, a parameter per core can be used to indicate whether a core is hard or
soft. Even though both problem formulations require data on the core-internal scan flip
flops, this does not mean that the problems are limited to scan-testable cores only. Both
problem definitions are equally well applicable to logic cores with full scan (where � �
equals the flip flop count of the core in question), partial scan (where � � equals the scan
flip flop count of the core in question), and no scan (where � � � �

). The latter case is
also applicable to non-logic cores, such as embedded memories, which per definition
have no core-internal scan chains.

3.4 Lower Bound on Test Time
As the test architecture design problem is

���
-hard, a lower bound on the SOC test

time is very useful to measure the performance of any test architecture design algo-
rithm, especially the one presented in this chapter. In this section, an architecture-
independent lower bound on the SOC test time is presented. The presented lower
bound

��� 

consists of two components

��� �
and

��� 	
.

The first component
��� �

is an architecture-independent lower bound presented
in [Cha01].

��� � ��	�� 
 �,& � ��	 � � �CB 	 B - /D1E2 � ��� � � � � (3.1)

where � � � � � � denotes the test time for core � with TAM width
�
. The idea behind this

lower bound is that every core � � � requires a test time of at least
	�� ����B 	 B - /0132 � � � � � � ,

and hence the overall SOC test time cannot be smaller than the maximum of these
minimum core test times.

��� �
is a tight lower bound only in those architectures where the SOC test time

is determined by one core (‘bottleneck’) with a large test time. A core is called a
‘bottleneck’ if increasing its TAM width does not further reduce its test time.

��� �
was

originally defined in [Cha01] for SOCs with hard cores. However, the same equation
can also be used to calculate a lower bound for an SOC with soft cores.
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In many architectures, multiple cores are connected to one TAM and together de-
termine the overall SOC test time. In such cases,

��� �
is not a tight lower bound and

can be improved. The second component of the presented lower bound is referred to
as
��� 	

and considers the total test-data volume that needs to be shifted into and out of
the SOC, given the total TAM width � ��� � . Hereby, it is assumed that all cores have
ideally balanced scan chains, or, in other words, all cores are considered to be ‘soft’
(even if, in reality, they are ‘hard’).

In order to derive
��� 	

, the lower bound on the test time of a core is tackled first.
Per test pattern, test stimuli need to be loaded into the wrapper input cells as well as
into the core-internal scan chains of the core-under-test. Similarly, test responses need
to be unloaded from the core-internal scan chains as well as from the wrapper output
cells of the core-under-test. If for a core � , terms � � � and ��� � represent the test stimuli
bits and test response bits per test pattern, then for a hard core, � � � and ��� � can be
defined as follows.

� � ��� � � � � � �
����
� � � �

��� �
(3.2a)

��� ��� � � � � � �
� ��
� � � �

��� �
(3.2b)

Similarly, for a soft core, � � � and ��� � can be defined as follows.

� � � � � ��� � � � � � (3.2c)

��� � � � � � � � � � � (3.2d)

In practice, the unloading of the responses of one test pattern is overlapped in time
with the loading of the stimuli of the next test pattern. Therefore, a lower bound on the
test time of core � can be defined as follows:

��� ����� 	���
 � � � � � ��� � ����� � �
	�� � � � � � � ��� � �
� ����� � � � � (3.3)

The second term of Equation (3.3) represents the time needed to apply/capture the
test patterns; this depends only on the number of test patterns and is independent from
the TAM width � ����� .

An architecture-independent lower bound on the test time of the entire SOC is in
principle the sum of the lower bounds for all individual cores. However, in case of
multiple TAMs, it is possible that the TAM with the largest test time contains only the
core with the smallest number of test patterns. Hence the second term of Equation (3.3)
is taken out of the summation in Equation (3.4) and replaced by the minimum of the
test pattern counts for all cores in the SOC. Also, the unloading of the responses of the
last pattern for a core can be overlapped in time with the loading of stimuli of the first
pattern for the another core. Therefore, a lower bound

��� 	
on the test time of a SOC

can be written as:

��� 	�� � � � �� � � �
	���
 � � � ��� ��� � � � � ���
	�� � � � � ��� ��� � � 
 	�� � � ��� � � � ��� �

� �
� ����� � �

� � �	����� � � � � (3.4)
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where � �9� � � � � � �
(as there are � �$� cores only). The lower bound

��� 	
is a tight lower

bound only when the SOC test time is determined by a number of cores connected to
the same TAM. On contrary, the lower bound

��� �
is a tight one in the case when the

SOC test time is determined by the test time of a single core (‘bottleneck’). Therefore,
a general lower bound

��� 

which is valid and tight in all cases, can be written as:

��� 
 ��	���
 � ��� ��� ��� 	 � (3.5)

Note that this lower bound does not take into account the test time required for the
interconnect tests of the top-level SOC itself and assumes that all cores in the SOC are
at the same level of design hierarchy.

For two Philips benchmarks SOCs [MIC], Figure 3.3(a) and (b) graphically display,
for a range of values for � ����� , the values of

��� �
and

��� 	
considering hard and soft

cores respectively.
��� �

yields different values for the cases with hard cores and the
cases with soft cores, whereas

��� 	
is independent of the type of core. Exact values of

��� �
and

��� 	
are listed in Table 3.1.
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Figure 3.3: Lower bounds on test time for two Philips SOCs.

Table 3.1: Architecture-independent lower bounds on test time for two Philips SOCs.

SOC Benchmarks
SOC p22810 SOC p34392

������� �	��
 �	�
� ����
 �����

Hard Soft Hard/Soft Hard Soft Hard/Soft
Cores Cores Cores Cores Cores Cores

8 278641 265350 838930 663193 631857 1865451
16 145417 132856 419466 544579 316301 932790
24 133405 88631 279644 544579 211116 621903
32 102965 66609 209734 544579 158896 466459
40 102965 53324 167787 544579 127564 373193
48 102965 44406 139823 544579 105931 311016
56 102965 38218 119848 544579 91011 266603
64 102965 33486 104868 544579 79821 233294
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From Figure 3.3(a), one can see that in case of hard cores, the curve for
��� �

be-
comes horizontal for large values of � ����� . If that happens, there is at least one core
that forms the bottleneck in

@
and for which increasing its � ����� does not decrease

@
any more. This phenomenon does not occur for

��� 	
, which continues to decrease for

increasing � ����� . Hence, for large values of � ����� , ��� � becomes the dominant lower
bound. However, for many practical values of � ����� , the lower bound component

���
	


really improves the lower bound by making it tighter. In Figure 3.3(a), for SOC p34392
and � ����� � � 
 ,

��� � � ��� 	 . In all other cases, the lower bound component
��� 	

pro-
vides a tighter lower bound, which underlines the value of the presented lower bound
analysis.

For the cases with soft cores, values of
��� 	

are usually higher than the values of
��� �

as shown in Figure 3.3(b), which means that for SOCs with soft cores also,
��� 	

is a tighter lower bound than
��� �

.

3.5 Test Bandwidth Utilization

The lower bound
��� 


described in the previous section assumes that all available
TAM width � ����� can be used without any under-utilization for subsequent testing of
all cores in the SOC. In practice, this is often not achievable. If the lower bound is not
reached, this implies that one or more TAM wires are used to feed idle bits into and out
of the SOC. In this section, three different types of idle bits are defined and analyzed.

3.5.1 Type-1 Idle Bits: Imbalanced Test Completion Times

In general, scheduling can be defined as the allocation of limited resources to tasks
over time [Pin95]. In case of test scheduling, the tasks are the tests of the various cores
and the limited resources are the TAMs, or defined at a finer grain, the individual TAM
wires. The overall SOC test time

@
is defined by the completion time of the last core

test on any TAM. In a concrete schedule, one TAM might complete its tasks before
other TAMs do. Between the completion time of an individual TAM and the overall
completion time, the TAM in question is not utilized. This type of under-utilization is
referred to as Type-1 idle bits. In general, it is the objective of scheduling approaches
to minimize this type of idle time.

Figure 3.4 shows an example of a serial test schedule. In the figure, the horizontal
axis represents the test time and the vertical axis represents the TAM width. In the
shown figure, there are three TAMs of widths

�
,

�
, and

�
. The overall completion time

is determined by the first TAM containing cores � and
�

. Due to different completion
times for individual TAMs, there are some Type-1 idle bits which are indicated by
means of a dark-grey shade.

3.5.2 Type-2 Idle Bits: Assigned to Non Pareto-Optimal Width

As described in Chapter 2, wrapper design for a core involves the partitioning of the set
of scan elements of the core over the TAM wires assigned to the core. The set of scan
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Figure 3.4: Example of a serial test schedule showing Type-1 idle bits.

elements of a core consists of the wrapper input cells, the wrapper output cells, and the
core-internal scan chains. For an increasing TAM width � ����� , the scan elements get
redistributed over the TAM wires, resulting in another partitioning. However, the scan
time per test pattern (and hence the test time for the core) only decreases if the increase
in TAM width is sufficient to remove the bottleneck in scan time.

Consider a core with four fixed-length internal scan chains of length 100 flip flops
each. If assigned two TAM wires ( � � �

), the scan time per test pattern is 200 clock
cycles, as shown in Figure 3.5(a). In Figure 3.5(a), the vertical axis represent the TAM
width and the horizontal axis represents the scan time (in number of clock cycles).
If the number of TAM wires is increased to three ( � � �

), the scan time does not
decrease, as shown in Figure 3.5(b). Instead, due to differences in the total scan length
for various TAMs, there are 200 idle bits per test pattern.
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Figure 3.5: Example showing increasing TAM width � ��� � does not always lead to
reduced test time.

This phenomenon leads to a ‘staircase’ behavior in case the test time of a core
is plotted as function of its TAM width � ��� � . Figure 3.5(c) shows the test time as
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function of TAM width for core 1 of SOC d695 [MIC]. In this figure, the staircase
behavior can be clearly recognized. For example, increasing the TAM width from

� �
to
���

does not reduce the test time, as the next improvement in test time is only obtained
for � ����� � � �

.

For a core � , a TAM width � for which holds that � � � �%
 � � � � � � � � (where � � is
the test time for core � and � � � � � ��� ) is known as a Pareto-Optimal TAM width of
core � [ICM02a]. In Figure 3.5(c), the Pareto-Optimal TAM widths are represented by
the dark-colour (blue) bars and the non Pareto-Optimal TAM widths are represented
by light-colour (green) bars. If a core is assigned to a TAM with a non Pareto-Optimal
TAM width, the redundant bits transported along the excess TAM wires are referred to
as Type-2 idle bits. Note that Type-2 idle bits are a serious problem for hard cores only,
i.e. cores with fixed-length scan chains.

3.5.3 Type-3 Idle Bits: Imbalanced Scan Chains

Even if only the wrappers with the Pareto-Optimal TAM widths are considered, there
might be still under-utilization of the available TAM width due to imbalanced scan
chain lengths assigned to TAM wires. Idle bits due to imbalanced wrapper scan chains
after wrapper design, are called Type-3 idle bits. The phenomenon is explained by
means of the example depicted in Figure 3.6(a). In Figure 3.6(a), the vertical axis
represent the TAM width and the horizontal axis represents the scan time (in number
of clock cycles).
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Figure 3.6: (a) Example showing the cause of Type-3 idle bits, (b) Pareto-Optimal
TAM widths for core 2 in SOC p34392, and (c) number of Type-3 idle bits for core 2
in SOC p34392 at Pareto-Optimal TAM widths.

Consider a core with three internal scan chains of lengths 100, 100, and 70 respec-
tively. In Figure 3.6(a), the cases � � �

, � � �
, and � � �

, are considered which
are all Pareto-Optimal. For the case � � �

, all core-internal scan chains are assigned
to this one TAM wire, and per definition, there are no imbalanced scan chains. Hence,
there are no Type-3 idle bits. However, for the cases � � �

and � � �
there are
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respectively 70 and 30 bits of Type-3 idle bits per test pattern, due to the imbalanced
scan chain lengths.

Figure 3.6(b) shows that core 2 of SOC p34392 has the following set of Pareto-
Optimal TAM widths:

� � 
 � ��� � 
 � � � . In Figure 3.6(b), the Pareto-Optimal TAM
widths are represented by the dark-colour (blue) bars and the non Pareto-Optimal TAM
widths are represented by light-colour (green) bars. Figure 3.6(c) then shows the total
amount of Type-3 idle bits for these Pareto-Optimal TAM widths, which amounts to
� � � ����� bits for some cases.

The Type-3 idle bits due to imbalanced scan chains are caused by fixed-length core-
internal scan chains. For soft cores, the scan chains can be designed such that Type-3
idle bits are limited to at most one-bit per TAM wire. To understand this phenomena,
consider a soft core with � � flip flops and a TAM width of � ��� � . Now if � � is an
integer multiple of � ��� � , then all � ����� TAM wires will contain the same number of
flip flops and there will be no Type-3 idle bits. Otherwise, there will be a difference of
at most one flip flop among the number of flip flops connected to the TAM wires. For
example, if � � � ��� �

and � � �
, then each of the two TAM wires will connect to

� �
flip flops and there will not be any Type-3 idle bits. For case � � �

, one TAM wire
will connect to

� �
flip flops and the other two TAM wires will connect to

� �
flip flops

each. Therefore, one Type-3 idle bit per TAM wire for the two TAM wires. Similarly,
for other values of � also, one can easily see that there will be at most one Type-3 idle
bit per TAM wire.

For SOC d695 [MIC] with ������� � � �
, Figure 3.7 shows an example of a serial test

schedule, corresponding to a hybrid test bus architecture. In the figure, the numbered
boxes depict the tests of the cores and the number inside a box represents the core ID.
At the end of each TAM, the shown number represents the test time (in number of
clock cycles) for the TAM. The three types of idle bits in the schedule are indicated by
means of different grey shades. This schedule contains 12,598 Type-1 idle bits which
corresponds to 2% of the total bits in the schedule. Similarly, the schedule contains
25,386 Type-2 idle bits (= 4%) and 9,681 Type-3 idle bits (= 2%).
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3.6 Test Architecture Design Algorithm

As a hybrid test architecture is a generalized form of all test architectures, in this section
an effective and efficient algorithm called TR-ARCHITECT is presented for designing
a hybrid test architecture for an SOC. The algorithm optimizes a test architecture for
a given SOC with respect to its test time. It uses the input parameters as described
in the problems TADHC and TADSC in Section 3.3. TR-ARCHITECT is based on
fixed-width TAMs, i.e. it does not allow forking and merging of TAMs as in [ICM02d,
ICM02c].

In TR-ARCHITECT, a TAM � is represented as a set of cores, which are connected
to � . For an SOC test architecture, TR-ARCHITECT determines the following:

� the set of TAMs � , such that � ����� &�� � and � �	� � ��
 &�� � � �
� � 	 � � � , i.e. every
core is assigned to exactly one TAM,

� the width � � � � of every TAM � ��� , such that
$ � &�� � � � � K � ����� , i.e. the

summed width of the TAMs does not exceed � ��� � ,

� the wrapper design for every core in the SOC,

such that the overall SOC test time
@

is minimized. The overall SOC test time
@

is
the maximum of the test times of the individual TAMs in the SOC test architecture. To
determine the test time � � � � for a TAM � with width � � � � , the existence of a procedure
TESTTIME � � � � � � � � is assumed. For designing a wrapper around a core � , the proce-
dure TESTTIME uses a procedure WRAPPERDESIGN ��� � � � � � � . The implementation
details with regards to these procedures are given in Section 3.7.

The algorithm TR-ARCHITECT has five main steps, as shown in Algorithm 3.1.
Each of these steps is explained in more detail in the sequel of this section.

Algorithm 3.1 [TR-ARCHITECT]

1 CREATESTARTSOLUTION;
2 OPTIMIZE-BOTTOMUP;
3 OPTIMIZE-TOPDOWN;
4 RESHUFFLE;
5 CHECK-EMPTYWIRE

3.6.1 Creating a Start Solution

The procedure CREATESTARTSOLUTION, as outlined in Algorithm 3.2, is meant to
create an initial test architecture, which will be further optimized by the procedures to
follow. It consists of a short initialization, followed by three main steps.

In Step 1 (Lines 3–8), cores are assigned to one-bit wide TAMs. If � ����� � � �$� ,
each core gets assigned; if � ��� � � � �$� , only the largest � ����� cores get assigned.
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‘Large’ is here defined by the test-data volume for each core, according to which the
cores have been sorted in Line 1. In case � ����� � � �$� , the procedure is finished.

In case � ��� � � � �$� , there are still some un-assigned cores. In Step 2 (Lines 9–15),
these cores are added iteratively to the one-bit wide TAM with the shortest test time.
This procedure is in fact based on the Largest Processing Time (LPT) algorithm [Gra69]
(see Section 2.6) for Multi-Processor Scheduling.

In case ����� � � � �$� , there are still some un-used TAM wires. In Step 3 (Lines 16–
22), these wires are added iteratively to the TAM with the longest test time.

Algorithm 3.2 [CREATESTARTSOLUTION]

1 sort � such that TESTTIME ��� ��� �C� 	��
TESTTIME ��� 	�� �C� 	����	�	�
� TESTTIME ��� � � � � ��� 	 ;2
�

:= � ;
3 for 	 := 1 to min � - /D1E2 � � � � 	 do
4
- � � � 	 := 1;

5
� �

:= � 	 � ;
6 � � � � 	 := TESTTIME � � � � - � � � 	 	 ;
7

�
:=
��
 � � � � ;

8 od;
9 if
- /0132�� � � � then

10 for 	 :=
- /D1E2

�
�

to � � � do
11 find

���
for which � � ��� 	 � ��� ������� � � � 	 ;

12
���

:=
��� 
 � 	 � ;

13 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;
14 od;
15 fi;
16 if
- /0132�� � � � then

17 for 	 := � � � �
�

to
- /0132

do
18 find

���
for which � � ��� 	 � ����������� � � � 	�	 ;

19
- � ��� 	 :=

- � ��� 	 �
�
;

20 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;
21 od;
22 fi;

/* sort cores in non-increasing order of their
test-data volume */

// initially, the set of TAMs
�

is empty
// Step 1: iteratively, assign cores to one-bit TAMs
// create a one-bit wide TAM
// connect a core to it
// calculate the test time of the created TAM
// add the created TAM to the set of TAMs

�
// Step 2: if cores left, add to least-occupied TAMs
// iteratively, assign remaining un-assigned cores
// find the TAM with the minimum test time
// add an un-assigned core to this TAM
// update its test time

// Step 3: if wires left, add to most-occupied TAMs
// iteratively, assign remaining un-used wires
// find the TAM with the maximum test time
// assign one more wire to this TAM
// update its test time

Computational complexity: The computational-time complexity of a procedure is the
number of steps that it takes to solve an instance of the problem, as a function of the
size of the input. For the test architecture design problem, the inputs are the TAM width
� ����� and the set of cores � . The worst-case computational-time complexity of the pro-
cedure CREATESTARTSOLUTION is � � � ��� � � �$� � . Details about the computational-
time complexity analysis for this procedure can be found in Appendix B.2.

3.6.2 Optimize Bottom Up

The procedure OPTIMIZE-BOTTOMUP tries to optimize the test time of a given test
architecture. It does so by trying to merge the TAM with the shortest test time with
another TAM, such that the wires that are freed up in this process can be used for
an overall test time reduction. Algorithm 3.3 lists the pseudo-code for the procedure
OPTIMIZE-BOTTOMUP. It is an iterative procedure, of which every iteration consists
of two steps.

In Step 1 (Lines 3–12), the procedure finds a TAM � ��� � with minimum test time,
i.e. � � � ��� � � � 	���� � &�� � � � � . The cores in TAM � ��� � and the cores in one of the other
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TAMs, say � , are merged into a new TAM, say � H , with width
	���
 � � � � ��� � � � � � � ��� .

TAM � is selected from �?; � � ��� � � , i.e. set of TAMs � excluding � ��� � , such that � � � H �
is minimum and � � � H � does not exceed the current overall test time

@
.

In Step 2 (Lines 13–22), the merge is implemented and � is updated. As the new
TAM � H only uses

	���
 � � � � ��� � � � � � � � � wires,
	�� � � � � � ��� � � � � � � ��� wires are now

freed up. The freed-up wires are distributed over all TAMs, in order to reduce the
overall test time

@
; here the used procedure is similar to Step 3 in CREATESTARTSO-

LUTION (Algorithm 3.2). The procedure ends if all TAMs have been merged into one
single TAM, or if no TAM � can be found such that � � � H � does not exceed the current
overall test time

@
.

Algorithm 3.3 [OPTIMIZE-BOTTOMUP]

1 improve := true;
2 while � � � �I��� improve do
3 find

� / � � for which � � � / � � 	 � ��� � ����� � � � 	 ;
4



:= ������� ��� � � � 	 ; � � ��� 	 := � ;

5 for all
� & ��� � � / � � � do

6
���
	 /��

:=
� / � � 
 � ;

7
- � � �
	 /�� 	 := ����� � - � � / � � 	 � - � � 	�	 ;

8 � � � �
	 /�� 	 := TESTTIME � � �
	 /�� � - � � �
	 /�� 	�	 ;
9 if � � � �
�
	 /�� 	 B 
 	 � � � � �
�
	 /�� 	 � � � ��� 	�	 then

10
��� 	��

:=
�

;
���

:=
�
�
	 /��

;
11 fi;
12 od;
13 if � � ��� 	 B 
 then
14

-���� 	�	
:= ��� � � - � � / � � 	 � - � � � 	�� 	�	 ;

15
�

:=
��� � ��� 	�� � � / � � � ;

�
:=
� 
 � ��� � ;

16 for 	�� � � to - � � 	�	 do
17 find

���
for which � � ��� 	 � ��� � ����� � � � 	 ;

18
- � ��� 	 :=

- � ��� 	 �
�
;

19 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;
20 od;
21 else improve := false;
22 fi;
23 od;

// initially, improvement is possible
// while multiple TAMs and improvement possible
// Step 1: find TAM

� / � � with minimum test time
// calculate the current maximum test time



// iteratively, find merge candidate TAM

�
// create a TAM

� �
	 /��
with cores in

� / � � and
�

// assign it the maximum of the widths of
� / � � and

�
// calculate the test time of TAM

����	 /��
// if the test time of

���
	 /��
is minimum and

B 

// accept this merge proposal

// Step 2: if a merge proposal was found
// calculate the number of freed-up wires
// remove merged TAMs and add proposed TAM
// iteratively, assign all freed-up wires
// find the TAM with the maximum test time
// assign one more wire to this TAM
// update its test time

// if no proposal was found, no improvement possible

The operation of one iteration of the procedure OPTIMIZE-BOTTOMUP is illus-
trated by means of an example depicted in Figure 3.8. Figure 3.8(a) shows a test ar-
chitecture instance. TAM 3, containing cores � and � , has the shortest test time and
hence � ��� � is TAM 3. Subsequently, the procedure looks for another TAM with which
TAM 3 can be merged. TAM 1, containing core � , does not qualify, as it already de-
termines the overall SOC test time

@
, and adding the cores of TAM 3 to it, would only

increase that test time. However, TAM 2 does qualify, and hence a new TAM is created
containing cores

�
, � , and � (Figure 3.8(b)). The � �

wires of TAM 3 are now freed
up, and in Step 2, they are distributed over the two remaining TAMs. Figure 3.8(c)
shows that this leads to a decrease in test time of both TAMs, and hence decreases the
overall test time

@
.

Computational complexity: The computational-time complexity of this procedure
heavily depends on the number of TAMs created in the CREATESTARTSOLUTION step.
In the worst-case, one can assume that every core is connected to a separate TAM, i.e.
� �$� � � �$� and during optimization all TAMs are merged into a single TAM. Based
on this, the worst-case computational-time complexity of the procedure OPTIMIZE-
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Figure 3.8: Two subsequent steps of the procedure OPTIMIZE-BOTTOMUP.

BOTTOMUP can be written as � � � ��� � � �$� 	 � . Details about the computational-time
complexity analysis for this procedure can be found in Appendix B.3.

3.6.3 Optimize Top Down

The procedure OPTIMIZE-TOPDOWN tries to optimize the test time of a given test
architecture in two subsequent steps. In Step 1, the algorithm iteratively tries to merge
the TAM with the longest test time with another TAM, such that the overall test time is
reduced. When there are no further test time improvements possible in Step 1, Step 2
is executed, In Step 2, the algorithm iteratively tries to free up wires by merging two
TAMs that do not have the longest test time, under the condition that the test time of
the resulting TAM does not exceed the overall test time. The wires that are freed up
as a result of this merge, can be used for an overall test time reduction. Algorithm 3.4
lists the pseudo-code for the procedure OPTIMIZE-TOPDOWN.

In Step 1 (Lines 2–18), the procedure iteratively carries out the following actions.
It finds a TAM � ����� with the longest test time. Subsequently, the procedure tries to
find a TAM � � � ; � � ����� � (a TAM other than � ��� � in � ), which could be merged
with TAM � ��� � into a new TAM � H with � � � H � � � � � ��� � � � � � � � , such that � � � H �
is minimum and � � � H � does not exceed the current overall test time

@
. If such a new

TAM � H is found, the merge is implemented and � is updated (Lines 12–13). Else, the
TAM � ����� is placed in the set ������� � (Lines 15–16) and Step 2 is carried out next.

Step 2 (Lines 19–47) is quite similar to Step 1, apart from the following two differ-
ences:

1. for a merge of two TAMs, it only considers the TAMs which are in � but not in
� ����� � , i.e. � � �?; � ����� � ,

2. width � � � H � of the merged TAM � H is determined by a linear search between the
lower limit � � � 	���
 � � � � ����� � � � � � � � and the upper limit � 
 � � � � ��� � � �
� � � � , such that � � � H � is minimum. In this way, the freed-up TAM width, de-
noted as ��� ��� � , is maximized.

If search is successful , the freed-up wires ��� ��� � are distributed over the TAMs to
minimize the test time of the architecture. If the search was not successful, then TAM� ��� � is added to set � ����� � .
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Algorithm 3.4 [OPTIMIZE-TOPDOWN]

1 improve := true;
2 while � � � �I��� improve do
3 find

�
����� for which � � � /0132 	 � ��� � ����� � � � 	 ;

4



:= ������� ��� � � � 	 ; � � ��� 	 := � ;
5 for all

� & ��� � � /0132�� do
6

���
	 /��
:=
� /D1E2 
 �

;
7
- � � �
	 /�� 	 :=

- � � /D1E2 	 �
- � � 	 ;

8 � � �
�
	 /�� 	 := TESTTIME � �
�
	 /�� � - � ���
	 /�� 	�	 ;
9 if � � � �
�
	 /�� 	 � 
 	 � � � � �
�
	 /�� 	 � � � ��� 	�	 then

10
� � 	��

:=
�

;
���

:=
� �
	 /��

; fi;
11 od;
12 if � � ��� 	 B 
 then
13

�
:=
��� � ��� 	�� � � /D1E2�� ;

�
:=
� 
 � ��� � ;

14 else
15 improve := false;
16

� ��� � � := �
� /D1E2��

;
17 fi;
18 od;
19 while

� ��� � �
	� � do
20 find

�
����� for which � � � /0132 	 � ��� � ������� � ��� � � � � � 	 ;

21



:= ����� � ��� � � � 	 ;
22 for all

� & ��� � � ��� � � 
 � � /0132 � 	 do
23

���
	 /��
:=
� /D1E2 
 �

;
24

- � :=
- � � /D1E2 	 �

- � � 	 ;
25

- � := ����� � - � � /0132 	 � - � � 	�	 ;
26 found := 
�� � ��� ; - � � �
	 /�� 	 :=

- � ;
27 while � found

� � - � ���
	 /�� 	 B - � 	 do
28 � � �
��	 /�� 	 := TESTTIME � ���
	 /�� � - � �
�
	 /�� 	 	 ;
29 if � � � ��	 /�� 	 B 
 then
30 found := true;

- ��� 	�	
:=
- ���
- � �
�
	 /�� 	 ;

31 if
- ��� 	�	 � - � /0132

32
-�� /0132

:=
-���� 	�	

;
���

:=
� ��	 /��

;
� � 	��

:=
�

;
33 fi;
34 fi;
35

- � �
��	 /�� 	 :=
- � �
��	 /�� 	 �

�
;

36 od;
37 od;
38 if � � ��� 	 B 
 then
39

�
:=
��� � � � 	�� � � /D1E2 � ;

�
:=
� 
 � � � � ;

40 for 	�� � � to - � /0132 do
41 find

���
for which � � ��� 	 � ��� � ����� � � � 	 ;

42
- � ��� 	 :=

- � ��� 	 �
�
;

43 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;
44 od;
45 else

� ��� � � :=
� ��� � � 
 � � /0132 � ;

46 fi;
47 od;

// initially, improvement is possible
// Step 1: while � � � �I� and improvement possible
// find TAM

� /D1E2
with maximum test time

// calculate the current maximum test time



// iteratively, find merge candidate TAM
�

// create a TAM
�
��	 /��

with cores in
� /D1E2

and
�

// assign it the summed width of
� /D1E2

and
�

// calculate the test time of TAM
� �
	 /��

// if the test time of
�
��	 /��

is minimum and
B 


// accept this merge proposal

// if a merge proposal was found
// remove merged TAMs and add proposed TAM
// no merge proposal was found
// no improvement possible
// exclude

� /D1E2
from further consideration

// Step 2: while TAMs are still under consideration
// find the TAM

� /D1E2
with maximum test time

// calculate the current maximum test time



// iteratively, find merge candidate TAM
�

// create a TAM
� ��	 /��

with cores in
� /D1E2

and
�

// assign upper limit on its TAM width
// assign lower limit on its TAM width
// start with TAM width equal to lower limit
// assign the actual width through linear search
// calculate the test time of TAM

���
	 /��
// if the test time of

� ��	 /��
is less than or equal to



// a merge proposal is found, calculate freed-up wires
// if the number of freed-up wires is maximum
// accept this merge proposal

// increase the TAM width by one wire

// if a merge proposal was found
// remove merged TAMs and add proposed TAM
// iteratively, assign all freed-up wires
// find the TAM with the maximum test time
// assign one more wire to this TAM
// update its test time

/* if no merge proposal was found, exclude
� /0132

from further consideration */

The operation of Step 1 of the procedure OPTIMIZE-TOPDOWN is illustrated in
Figure 3.9. This figure shows a test architecture instance, in which TAM

�
containing

only core � , has the largest test time. TAM
�

is merged with TAM
�
, which contains

cores � and � . The newly formed TAM contains cores � , � , and � , and gets assigned
a width equal to � ��� � �

. This leads to an overall test time reduction.

Computational complexity: The computational-time complexity of this procedure
depends on the number of TAMs passed from the OPTIMIZE-BOTTOMUP step. In
the worst-case, one can assume that there was no merging of TAMs possible in the
OPTIMIZE-BOTTOMUP procedure, and hence the number of TAMs is equal to the
number of cores, i.e. � �$� � � �$� . Based on this, the worst-case time complexity of
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Figure 3.9: One iteration of Step 1 of the procedure OPTIMIZE-TOPDOWN.

the procedure OPTIMIZE-TOPDOWN can be written as � � � ����� � �$� 	 � . More details
about the computational-time complexity analysis for this procedure can be found in
Appendix B.4.

3.6.4 Reshuffle

The procedure RESHUFFLE tries to minimize the test time of a given test architecture
by moving one of the cores assigned to a TAM with the maximum test time to another
TAM, provided that this decreases the overall test time. Algorithm 3.5 lists the pseudo-
code for the procedure RESHUFFLE.

Algorithm 3.5 [RESHUFFLE]
1 improve := true;
2 while improve do
3 find

� /0132
for which � � � /D1E2 	 � ����������� � � � 	 ;

4 if � � /0132 � � � then
5 improve := false;
6 else
7 find core

� �
for which � � � � 	 := ��� ��� � � /0132 � � � 	 ;

8 TAMFound := false;



:= ����� ����� � � � 	 ;
9 while

� & ��� � � /D1E2 ��� � TAMFound do
10

���
:=
� 
 � � � � ;

- � ��� 	 :=
- � � 	 ;

11 � � ��� 	 := TESTTIME � ��� � - � ��� 	 	 ;
12 if � � ��� 	 � 
 then
13 TAMFound := true;
14

� /D1E2
:=
� /0132 � � � � �

15
�

:=
��� � � � 
 � ��� � ;

16 fi;
17 od;
18 if � TAMFound then
19 improve := false; fi;
20 fi;
21 od;

// initially, improvement is possible
// while improvement is possible
// find TAM

� /0132
with maximum test time

// if it contains only one core
// no improvement possible
// else, TAM contains multiple cores
// find core

� �
in
� /0132

with minimum test time
// calculate the current maximum test time



// iteratively, find merge candidate TAM

�
// create a TAM

���
with cores in

�
and core

� �
// calculate the test time of the created TAM

� �
// if test time of

���
is less than



// accept this merge
// remove core

� �
from TAM

� /D1E2
// update TAM set

�
by removing

�
and adding

� �

// if no merge was found
// no improvement possible

In Line 3, the procedure identifies a TAM � ����� with the maximum test time. If the
TAM � ����� contains multiple cores, core

� H
with the minimum test time is identified.

The procedure searches through the other TAMs, to see if there is one of them to which
core
� H

can be added such that there is an improvement in the overall test time
@

. If
that is the case, core

� H
is indeed moved from the TAM with the maximum test time

to this other TAM (Lines 12–15). This procedure is repeated until the TAM with the
maximum test time contains only one core, or when no beneficial core re-assignment
can be found.
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Computational complexity: In the worst-case, one can assume that the TAM with
the maximum test time contains � �$� 
 � cores and during optimization all cores ex-
cept one are moved from this TAM to the other TAM. Based on this, the worst-
case computational-time complexity of the procedure RESHUFFLE can be written as� � � �$� 	 � . Details about the computational-time complexity analysis for this procedure
can be found in Appendix B.5.

3.6.5 Checking Empty Wire

Similar to the concept of Pareto-Optimal widths (See Section 3.5.2) for cores, based
on the cores connected to a TAM, the TAM also has a set of Pareto-Optimal widths.
The set of Pareto-Optimal widths for a TAM is determined by the union of the sets of
Pareto-Optimal widths for all the cores connected to the TAM. It is possible that during
the OPTIMIZE-BOTTOMUP and/or OPTIMIZE-TOPDOWN steps, the width assigned
to a TAM is a non Pareto-Optimal width. Therefore, in order to use all TAM wires
efficiently, this step tries to find the number of empty (redundant) wires in all TAMs.
These empty wires are then re-distributed among TAMs in order to minimize the overall
test time. Algorithm 3.6 lists the pseudo-code for the procedure CHECK-EMPTYWIRE.
The procedure CHECK-EMPTYWIRE consists of three steps.

Algorithm 3.6 [CHECK-EMPTYWIRE]

1
- 	 /�� �

� :=
�

;
2 for all

� & �
do

3 non-pareto := true;
4 while

- � � 	 �I��� non-pareto do
5 ���

� �
:= � � � 	 ; - � � 	 :=

- � � 	 � � ;6 � � � 	 := TESTTIME � � � - � � 	�	 ;
7 if � � � 	 � ���

� �
then

8 non-pareto := false;
9

- � � 	 :=
- � � 	 �
�

; � � � 	 := ���
� �

;
10 else

- 	 /�� �
� :=
- 	 /�� �

� �
�

;
11 fi;
12 od;
13 od;
14 for 	 � � � to - 	 /�� � � do
15 find

���
for which � � ��� 	 � ��� ������� � � � 	 ;

16
- � ��� 	 :=

- � ��� 	 �
�
;

17 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;
18 od;
19 non-pareto := true;
20 while non-pareto do;
21 find

���
for which � � ��� 	 � ��� � ����� � � � 	 ;

22 � �
� �

:= � � ��� 	 ; - � ��� 	 :=
- � ��� 	 � � ;23 � � ��� 	 := TESTTIME � ��� � - � ��� 	�	 ;

24 if � � ��� 	 � ���
� �

then
25 non-pareto := false;
26

- � � 	 :=
- � � 	 �
�
; � � � 	 := � �

� �
;

27 else
- 	 /�� �

� :=
- 	 /�� �

� �
�
;

28 fi;
29 od;

// initially, no empty wire
// Step 1: iteratively, for all TAMs in set

�
// initially, TAM width is a non Pareto-Optimal width
// while TAM width is more than one and non Pareto-Optimal
// compute current time and decrease the TAM width by one
// calculate the new test time for the TAM
// if new test time is greater than the current test time
// previous width was Pareto-Optimal width
// update the TAM width and test time
// increase the number of empty wires by one

// Step 2: iteratively, distribute all empty wires
// find the TAM with the maximum test time
// assign one more wire to it
// update its test time

// Step 3: TAM width is a non Pareto-Optimal width
// while non Pareto-Optimal is true
// find the TAM with the maximum test time
// compute current time and decrease the TAM width by one
// calculate the new test time for the TAM
// if new test time is greater than the current test time
// previous width was Pareto-Optimal width
// update the TAM width and test time
// increase the number of empty wires by one

In Step 1 (Lines 2–13), the procedure tries to find the number of empty wires by
iteratively decreasing the width � � � � of a TAM � � � and then comparing the old test
time ����� 	 with the new test time � � � � . If both the test times are the same, the number of
empty wires is increased by one. If the new test time is greater than the old test time,
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then it shows that the previous TAM width was a Pareto-Optimal width for the TAM.
Hence, the procedure assigns this Pareto-Optimal width to TAM � .

In case, Step 1 resulted in some empty wires, these wires are added iteratively to
the TAM with the longest test time in Step 2 (Lines 14–18). As the assignment of
unused wires to TAMs is done iteratively, it can happen that the width of the TAM with
the maximum test time is moved again from a Pareto-Optimal width to a non Pareto-
Optimal width. Hence, in Step 3 (Lines 19–29), number of empty wires are again
checked for the TAM with the maximum test time only.

Computational complexity: In the worst-case, one can assume that for all TAMs, the
search for Pareto-Optimal widths is carried out till every TAM has only one wire left.
The worst-case computational-time complexity of the procedure CHECK-EMPTYWIRE
can be written as � � � �$� � ��� � � . Details about the computational-time complexity anal-
ysis for this procedure can be found in Appendix B.6.

3.6.6 TR-Architect Computational Complexity

The overall worst-case computational-time complexity of TR-ARCHITECT algorithm
in principle is the sum of the worst-case computational-time complexities of the five
individual steps. On contrary, a worst-case scenario for a procedure might not repre-
sent the worst-case scenario for other procedures. For example, the case with � �$� �
� �$� represents the worst-case scenario for the procedures OPTIMIZE-BOTTOMUP and
OPTIMIZE-TOPDOWN, however this represent the best-case scenario for the procedure
RESHUFFLE. Based on the worst-case computational-time complexities of the five
steps, the overall worst-case computational-time complexity of TR-ARCHITECT can
be written as � � � ��� � � �$� � � ����� � �$� 	 � � ��� � � �$� 	 � � �$� 	 � � ����� � �$� � . Using the rules
of approximation as described in Appendix B, this can be reduced to � � � ��� � � �$� 	 � .

3.7 Test Time Calculation

TR-ARCHITECT optimizes a test architecture, independent of (1) the core type (hard
or soft), (2) the TAM type (test bus or TestRail), and (3) the schedule type (serial or
parallel). The user of TR-ARCHITECT selects whether to design architecture with hard
cores (problem TADHC) or with soft cores (problem TADSC) or a mix of both hard
and soft cores. In case of a mix of hard and soft cores, a parameter per core can be used
to indicate whether a core is hard or soft. The user also needs to select the type of TAM
e.g., test bus or TestRail. The selection of the test bus TAM automatically determines
the schedule type, as a test bus only supports serial scheduling. In case the TestRail
TAM is selected, the user of TR-ARCHITECT also needs to indicate the preference for
serial or parallel test scheduling.

TR-ARCHITECT uses a procedure TESTTIME � � � � � � � � (see Section 3.6) to de-
termine the test time � � � � of a TAM � with width � � � � . The procedure TESTTIME
in its turn utilizes the procedure WRAPPERDESIGN � � � � � � ��� for designing a wrapper
with TAM width � � � � around core � . Based on the user-defined choices above, TR-
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ARCHITECT uses different versions of the procedures TESTTIME and WRAPPERDE-
SIGN.

The procedure WRAPPERDESIGN ��� � � � � � � designs a wrapper for core � with TAM
width � � � � . For hard cores, the procedure WRAPPERDESIGN uses the COMBINE
algorithm [MGL00] presented in Chapter 2. For soft cores, calculating the scan-in and
scan-out times for a core reduces to a simple balanced distribution of the scan flip flops
and wrapper cells over � � � � TAM wires.

For the procedure TESTTIME, the test time calculation for a test bus architecture is
quite different from the same for a TestRail architecture. Also, in case of a TestRail ar-
chitecture, the calculation for the serial and parallel schedules are different. Therefore,
details about the test time calculations used by the procedure TESTTIME for test bus
and TestRail architectures are described separately in the sequel of this section.

3.7.1 Test Bus Architecture Test Time

The test time of a test bus equals the sum of the test times of the individual cores
connected to that test bus. If the test bus functionality is implemented by means of
multiplexers or tri-state drivers, then the test access to individual cores will not require
additional clock cycles. The total test time � � � � for the test bus � can be written as:

� � � � � �
�,& � � � (3.6)

where � � is the test time for core � and is defined in Eqn (2.1) in Chapter 2.

In a hybrid test bus architecture, all test buses are tested in parallel. Therefore, the
total test time

@
for a hybrid test bus architecture is the maximum of the test time for

all test buses and can be written as: @ ��	�� 
� &�� � � � � (3.7)

where � is set of test buses in the architecture.

3.7.2 TestRail Architecture Test Time

A TestRail TAM utilizes bypasses. If a core is not being tested, the shortest test-
access path to other cores in the same TestRail is through the bypass of the core. The
bypass is implemented as register, in order to provide a fully synchronous ‘plug-n-play’
interface, in which an infinite amount of cores can be daisychained [MAB

�

98]. This
yields in a latency of one clock cycle per bypass register in the test-access path.

Serial Schedule: in the case of a TestRail architecture that uses a serial schedule,
the procedure TESTTIME sums the test times of the individual cores in a TestRail � .
For every core, it adds � � � 
 � to the number of clock cycles needed per test pattern, in
order to account for the time latencies due to the bypass registers in rest of the cores.
The total test time � � � � for the TestRail � with a serial schedule can be written as:

� � � � � �
�,& � � � � � � � � � 
 � ��� � � � (3.8)
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where � � is the test time and � � is the total number of test patterns for core � .
Parallel Schedule: in the case of a TestRail architecture that uses a parallel sched-

ule, the procedure TESTTIME is a little-bit more complex. Initially, all cores � � � are
tested in parallel. This continues until one of them runs out of test patterns. Then, the
bypass for this core is turned on, while the testing of the remaining cores continued.
After a number of test patterns, another core runs out of test patterns and its bypass is
also turned on. This process is repeated until all cores have been completely tested.
The time to scan-in test-stimuli for a single pattern into all cores connected to the Test-
Rail � is

$ �,& � � ��� �� clock cycles, where � ������ is the length of the longest TAM chain
connecting scan chains as well as both wrapper input cells and wrapper output cells
in the wrapper of core � . Similarly, it takes

$ �,& � � ��� �� clock cycles to scan-out the
test-responses for a pattern.

Without loss of generality, it can be assumed that all cores in � are sorted in the
non-decreasing test pattern count order, i.e. � � K � 	 K � � � K �.� � � . If the scan-out
time of a pattern is pipelined with the scan-in time for the next pattern, testing of all
cores for the first � � number of test patterns requires the following number of clock
cycles: ��

��� �
� ��
� � � �

��� �� �� � � � �
� � ��
� � � �

��� �� (3.9a)

After the first � � test patterns, core
�

is put into bypass mode. The bypass is assumed
to be implemented as a register and hence takes one clock cycle of scan time. With
the assumption that the scan-in time of the first pattern in this session can be pipelined
with the scan-out time of the last pattern in the previous session, the time required to
execute � � 	 
 � � � test patterns in this session is�� � ��� ��

� � �
� ��
� � 	 �

������ ���� 	
 � � � 	 
 � � � � �
� ��
� � 	 �

��� �� 
 	�� �
�� � � ��
� � � �

������ � �
� ��
� � 	 �

��� �� �� (3.9b)

clock cycles. If this process is continued and all the intermediate results (Equations (3.9a),
(3.9b),

���
�
) ) are summed, one can derive the equation for the test time � � � � for the Test-

Rail � and which is as follows:

� � � � � �
� ��
� � �

�� �� �
� � 
 � � �

� � ��
� � � �

��� �� � 	
 � � � � 
 � � �
� � �
� � ��
� � � �

������


 	����
�� � � ��
� � � �

��� �� � �
� ��
� � � �

��� ��
�
� ���
� � � � � � (3.10)

where � � � �
and � ��� �� � � � � ���

.

To understand the test time calculations described above for the parallel schedule,
consider a TestRail containing two cores � and

�
with ��� � � �

and ��� � � �
test

patterns respectively. The maximum TAM chain lengths for cores � and
�

are � ������ �
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� �
and � ������ � � �

clock cycles respectively. Now for the first � � � � �
patterns, both

cores will be tested in parallel and the scan-in and scan-out time for a single pattern will
be

� � � � � � � �
clock cycles. Therefore, testing of both cores for the first � � � ���

patterns will require � � � � � � � � ��� � � � � � �
clock cycles. For the remaining���

patterns of core
�

, core � is put in the bypass mode. Testing of core
�

for the
remaining

���
patterns requires � � � � ��� � � � ��� ��� � � � 
 	 � � � � � � � � � � � � �

clock
cycles. Therefore the total test time for this TAM is equal to

� � � � � � � � 
�
 �
clock

cycles.

The total test time
@

for a hybrid TestRail architecture is the maximum of the test
times of the individual TestRails, similar to Equation (3.7).

3.8 Experimental Results
In this section, experimental results of TR-ARCHITECT are presented. As benchmarks,
the set of ITC’02 SOC Test Benchmarks [MIC, MIC02] have been used. In the exper-
iments, it has been assumed that an SOC only contains one level of hierarchy, i.e. the
SOC itself and all its embedded cores, even though some of these SOCs originally con-
tain multiple levels of design hierarchy. Also, only the core-internal tests of the SOCs
have been considered i.e. the interconnect tests for the top-level SOC itself have not
been taken into account. As all the SOCs in the benchmark set have a fixed number of
scan chains and lengths, only the test time results for the problem TADHC (SOC with
all hard cores) are presented.

For SOC p22810 with � ����� � ���
, Figure 3.10 illustrates how the five distinct

procedures of TR-ARCHITECT contribute to the improvement in the SOC test time.
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Figure 3.10: Improvement in test time for SOC p22810 using the five distinct proce-
dures of TR-ARCHITECT.

In Figure 3.10, the horizontal axis represents the number of successful iterations
(merge proposals), while the vertical axis represents the overall test time for the SOC.
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The horizontal line (green colour) just above the horizontal axis represents the theoret-
ical lower bound on the SOC test time. From Figure 3.10, one can see that initially the
test time of the architecture designed by TR-ARCHITECT is quite far from the lower
bound. However, as TR-ARCHITECT moves forward with the optimization steps, the
test time continues to decrease and finally, a test time which is very close to the lower
bound is achieved. From Figure 3.10, one can also see that for this case, most of the
optimization is accomplished by the procedure OPTIMIZE-BOTTOMUP. In contrast,
the procedure CHECK-EMPTYWIRE does not result in any improvement.

For the first four steps of TR-ARCHITECT, Figure 3.11 shows the corresponding
test schedule of the resulting architecture after each step.
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Figure 3.11: For the first four steps of TR-ARCHITECT, test schedule for SOC
p22810 with � ����� � � �

after each step.
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In Figure 3.11, the vertical axis represents the TAM width, while the horizontal
axis shows the test time (in number of clock cycles); the later is not to scale. In the
figure, the numbered boxes depict the tests of the cores and the number inside a box
represents the core ID. At the end of each TAM, the shown number represents the test
time (in number of clock cycles) for the TAM. The three different shades of grey in the
figure, represent the three types of idle bits.

As the procedure CREATESTARTSOLUTION is used to create an initial architecture
which will be further optimized by the other steps to follow, this step usually results
in an architecture with a large test time and a large amount of Type-1 idle bits (see
Figure 3.11(a)). The total amount of Type-1 idle bits in this schedule is

� � � � � � ����� �
(=


 �
% of the total bits in the schedule). From Figure 3.11(b), one can see that the

procedure OPTIMIZE-BOTTOMUP improves the test time by
���

%. However, it still
contains a large number of Type-1 idle bits (in total


�
�� � � 
 �
bits, i.e.

� �
%). The

procedures OPTIMIZE-TOPDOWN and RESHUFFLE further removed the Type-1 idle
bits and shows a saving of

�
% and

�
% in test time respectively. From Figure 3.11(d),

one can see that the resulting architecture contains only two TAMs and there is only
a difference of three clock cycles in their completion time. Therefore, there are only���
�

� � � �
Type-1 idle bits in this schedule. Ideally, this means that the test time

for this architecture should be very close to the lower bound of
� � � � � � �

clock cycles.
However, it is still

� �
% away from the lower bound. In order to understand better this

difference of
� �

%, all three types of idle bits in the schedule are analyzed.

For the test schedule shown in Figure 3.11(d), Figure 3.12(a) shows the total amount
of Type-2 and Type-3 idle bits in all cores. Figure 3.12(b) shows the percentage distri-
bution of different types of idle bits.
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Figure 3.12: (a) Total amount of Type-2 and Type-3 idle bits in all cores, (b) percentage
distribution of the three types of idle bits.

A large number of Type-3 idle bits for a core in Figure 3.12(a) shows a large im-
balance in the scan chains after the wrapper design. Similarly, a large number of Type-2
idle bits shows that the TAM width assigned to the core is quite far from the nearest
Pareto-Optimal width. The total number of idle bits in the schedule is

� ��� � � ���
bits.
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These idle bits themselves cause the test time of architecture to be


% away from the

lower bound. The remaining
�
% is contributed by the fact that the heuristic algorithm

TR-ARCHITECT produces near optimal results.

Next, the test time results of TR-ARCHITECT are compared to the best test times
that could be obtained by manual efforts of DfT engineers inside Philips, without ac-
cess to optimization tools such as TR-ARCHITECT. Out of the twelve ITC’02 SOC
Test Benchmarks, only the test architectures implemented on the three Philips SOCs
p22810, p34392, and p93791 are known. The SOCs p22810 and p34392 originally
had a distribution architecture [AM98] (i.e. all cores have their own, private TAM),
while SOC p93791 was equipped with a daisychain architecture [AM98] (i.e. all cores
are connected to one common single TestRail TAM).

Figure 3.13(a) shows the test schedule for an optimal distribution architecture for
SOC p22810 with � ����� � � �

. The horizontal axis shows the test time (in number of
clock cycles), while the vertical axis represents the TAM width. The numbered boxes
depict the tests of the cores and the number inside a box represents the core ID. At
the end of each TAM, the shown number represents the test time (in number of clock
cycles) for the TAM. The total test time for this schedule is determined by core 1 and
is equal to

� � � � � � �
clock cycles.
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Figure 3.13: For SOC p22810 and � ����� � � �
(a) distribution architecture schedule,

(b) hybrid test bus architecture schedule, and (c) hybrid test bus architecture schedule
with one soft core.

From Figure 3.13(a), one can see that this schedule contains a very large amount of
Type-1 idle bits. This is due to the fact that all cores in a distribution architecture have
separate TAMs and irrespective of the test-data requirements of the cores, every core
gets at least one (lowest integer) TAM wire. This results in less TAM wires available
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for the cores with large test data. This schedule contains
� � � � � ��� � �

Type-1 idle bits (
�

� �
%),

�
Type-2 idle bits (

� �
%), and

� � � � � � �
Type-3 idle bits (

� �
%).

Figure 3.13(b) shows the test schedule for a hybrid test bus architecture as com-
puted by TR-ARCHITECT for SOC p22810 with � ����� � � �

. The total test time for this
schedule is

� � � � � ���
clock cycles, which is a saving of

� �
% in test time as compared to

the test time obtained from the distribution architecture. Similarly, the total amount of
Type-1 idle bits reduces to

� � � � � � �
. This is due to the fact that a hybrid architecture al-

lows more than one core to connect to the same TAM. This schedule contains
� � � � � � �

Type-1 idle bits (
� �

%),
� � ��
 � �

Type-2 idle bits (
� �

%), and
� ��� � 
 � � � �

Type-3 idle
bits (

� � �
%).

It is important to note here, that different types of idle bits shown in Figure 3.13(a)
and (b) not only represent the amount of idle time in the schedules but also give an
insight about the SOC design itself. For example, in Figure 3.13(b), one can see that
the test schedule of core 26 contains a large amount of Type-3 idle bits and that rep-
resents � ���

% of the total idle bits present in the schedule. This is due to the im-
balanced scan chains inside the core. If it would have been allowed to modify the
internal scan chains of this core, one can reduce the overall test time further by

� �
% as

shown in Figure 3.13(c). The test schedule shown in Figure 3.13(c) contains very
few idle bits. This schedule contains

� � � � � � �
Type-1 idle bits (

� �
%),

� � � � � � �
Type-2 idle bits (

� �
%), and

� � � � � � �
Type-3 idle bits (

� �
%). Figure 3.14 shows

the hybrid test bus architecture that corresponds to the test schedule shown in Fig-
ure 3.13(c). This architecture consists of eight TAMs with the following width distri-
bution:
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Figure 3.14: Hybrid test bus architecture with one soft core (core 26) for SOC p22810
with � ����� � � �

.

For a range of � ����� values, Table 3.2 presents a comparison between the test
time results obtained from TR-ARCHITECT and the manual best-effort engineering
approaches i.e. the daisychain and distribution architectures. TR-ARCHITECT works
for both the test bus and TestRail TAMs and for both the serial and parallel schedules.
For comparison, the results for the hybrid test bus and hybrid TestRail architectures
with serial schedules are presented.
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Table 3.2: Test time results of TR-ARCHITECT and manual best-effort engineering
approaches for SOCs with hard cores.

Input Manual Best-Effort Eng. TR-Architect
SOC ������� Daisychain Distribution TB Hybrid

�	��

TR Hybrid

�	��
 
��
(%)

p22810 16 1338667 - 457433 473066 -64.7
24 1282005 - 302737 307496 -76.4
32 1218012 591585 222471 225743 -62.4
40 1211583 353619 190995 190995 -46.0
48 1196626 258602 157851 158634 -40.0
56 1196626 206023 145417 145417 -29.4
64 1196402 173705 133405 133405 -23.2

p34392 16 2694767 - 1010821 1019682 -62.52
24 2636922 1693419 663193 671432 -60.84
32 2612246 875499 584524 584524 -33.24
40 2602957 587609 544579 544579 -7.3
48 2592799 544579 544579 544579 0.0
56 2592799 544579 544579 544579 0.0
64 2568127 544579 544579 544579 0.0

p93791 16 2584315 - 1791638 1791638 -30.7
24 1985588 - 1185434 1223881 -40.3
32 1936078 5317007 912158 925344 -52.8
40 1845070 1813502 718005 749228 -60.4
48 1384343 1108358 601450 610880 -45.7
56 1371382 918576 528925 556254 -42.4
64 1371379 716679 455738 464351 -36.4

The header of the table indicates which architecture was used (where ‘TB’ stands
for test-bus, and ‘TR’ denotes TestRail). A ‘–’ entry denotes that the approach could
not yield an architecture for the corresponding � ����� . The column � @ shows the per-
centage (%) difference between the best of the TR-ARCHITECT solutions and the best
of the manual best-effort engineering approaches. The test time numbers in Table 3.2
are all based on hard cores.

From the table, one can see that for all cases, TR-ARCHITECT outperforms the
manual-engineering approaches and can lead to more than 75% reduction in required
tester-vector memory and test time. This can be explained by recognizing the fact
that daisychain and distribution architectures are the two extremes of the spectrum of
architectures covered by the hybrid architecture model. In other words, the hybrid
architecture model is a generalization of the first two. The presented experimental
results show that typically the best test times are obtained not at the two extremes of
the spectrum, but rather somewhere in between.

Next, the test time results of TR-ARCHITECT are compared to the lower bound
presented in this chapter and to four others previously published approaches. These
four approaches are as follows.

� ILP and exhaustive enumeration based approach in [ICM02a].
� Heuristic (Par eval) based approach in [ICM02b].
� Generalized rectangle-packing (GRP) based approach in [ICM02d].
� Cluster-based optimization approach in [GM02b].

Table 3.3 presents the test time comparison for a range of � ��� � (shown as � in the
table) values for four benchmark SOCs. These four SOCs are selected, as they are the
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Table 3.3: Test time results for lower bound, TR-ARCHITECT and four others algo-
rithms, for SOCs with hard cores.

ILP Par eval GRP Cluster TR-Architect
SOC � ����� TB TB TB TR TB TR TR

Serial Serial Serial Parallel Serial Serial Parallel
d695 16 40951 42568 42644 44545 44330 44307 44012 46035

24 27305 28292 30032 31569 30021 28576 28798 31241
32 20482 21566 22268 23306 23488 21518 21531 23488
40 16388 17901 18448 18837 19034 17617 17832 18799
48 13659 16975 15300 16984 16194 14608 14646 16194
56 11709 13207 12941 14974 13479 12462 12478 13935
64 10247 12941 12941 11984 11033 11033 11033 11033

p22810 16 419466 462210 468011 489192 - 457433 473066 485312
24 279644 361571 313607 330016 - 302737 307496 313958
32 209734 312659 246332 245718 259975 222471 225743 238289
40 167787 278359 232049 199558 206205 190995 190995 206205
48 139823 278359 232049 173705 173705 157851 158634 164580
56 119848 268472 153990 157159 146390 145417 145417 145417
64 104868 260638 153990 142342 133587 133405 133405 133587

p34392 16 932790 998733 1033210 1053491 - 1010821 1019682 1093066
24 621903 720858 882182 759427 876529 663193 671432 743128
32 544579 591027 663193 544579 585309 584524 584524 584524
40 544579 544579 544579 544579 544579 544579 544579 544579
48 544579 544579 544579 544579 544579 544579 544579 544579
56 544579 544579 544579 544579 544579 544579 544579 544579
64 544579 544579 544579 544579 544579 544579 544579 544579

p93791 16 1746657 1771720 1786200 1932331 - 1791638 1791638 1863436
24 1164442 1187990 1209420 1310841 - 1185434 1223881 1264236
32 873334 887751 894342 988039 - 912158 925344 942349
40 698670 698883 741965 794027 816972 718005 749228 747165
48 582227 599373 599373 669196 677707 601450 610880 643827
56 499053 514688 514688 568436 542445 528925 556254 538305
64 436673 460328 473997 517958 467680 455738 464351 469742

only ones for which results have been reported in [ICM02a,ICM02b,ICM02d,GM02b].
Note that SOCs p22810 and p34392 are referred to as p21241 and p33108 respectively
in [ICM02b], but these constitute the same SOCs.

In the terminology used throughout this chapter, ILP/Enum [ICM02a], Par eval
[ICM02b], and GRP [ICM02d] use a hybrid test bus architecture in conjunction with
a serial schedule, while the Cluster algorithms [GM02b] use a hybrid TestRail archi-
tecture in conjunction with a parallel schedule. TR-ARCHITECT works for the hybrid
test bus and hybrid TestRail architectures and for the serial as well as parallel sched-
ules, and hence all results are presented here. Per line of the table, the bold-font entries
denote the lowest test time over all methods.

The ILP/enumeration method [ICM02a] requires computation time in the range of
minutes to hours, depending on the complexity of the SOC and the total available TAM
width. The Par eval method [ICM02b] requires up to several minutes of computing
time. For all other methods, including our TR-ARCHITECT, computational time is less
than 10 seconds for all SOCs and all TAM widths, and hence negligible.

TR-ARCHITECT has proven to be very effective in optimizing the SOC test time.
For hybrid test bus architectures, its main competitor is the ILP/Enumeration approach
[ICM02a]. ILP/Enumeration is an exhaustive method, and hence, in principle, should
produce the best results. However, as the problem is

���
-hard [ICM02a], the exhaus-

tive ILP/Enumeration approach requires very large computation time, and hence was



3.9. Summary 59

restricted to cover only cases with two or three distinct TAMs. The fast heuristics of
TR-ARCHITECT do not have this limitation, and show that better test times can be
obtained for a larger number of TAMs. Compared to the other heuristic approaches,
the heuristics of TR-ARCHITECT typically perform better. For the (preferable) hybrid
TestRail architectures, TR-ARCHITECT yields comparable or better test times as com-
pared to the Cluster algorithms [GM02b], assuming parallel schedules. In addition,
TR-ARCHITECT does not have the limitation of the Cluster algorithms that the total
TAM width should be greater or equal to the number of cores inside the SOC. This
is the first publication on serial schedules for hybrid TestRail architectures, and hence
there is no competitor yet.

For SOC p34392, the test time for this SOC does not decrease beyond
� � � ��� � �

clock cycles for large � ����� . This is an example where lower bound component
��� �

is
actually achieved. This is due to core 18 of this SOC, which becomes a bottleneck core
for sufficiently large enough TAM widths. Core 18 reaches its minimum test time value
if assigned to a TAM of width 10, and increasing the TAM width does not further reduce
its test time. All algorithms find this minimum test time. GRP [ICM02d] reaches a test
time of

� � � ��� � �
clock cycles for ����� � � � �

. TR-ARCHITECT reaches this lower
bound for � ����� � � �

(not shown in Table 3.3) for the hybrid test bus architecture;
the total TAM width is partitioned over four test buses of widths

� � � ��� � �
and

� �
. The

overall SOC test time is determined by test bus 4, which contains core 18 only.

3.9 Summary

In this chapter, the test architecture design problem for SOCs with both hard and soft
cores is presented. Based on the amount of test data to be transported into and out
of the SOC and the total available TAM width, an improved architecture-independent
lower bound on the overall SOC test time is derived. For SOCs with hard cores, the
presented lower bound is more tight than the previously known lower bound for most
practical values of ����� � ; the new lower bound is virtually always an improvement for
SOCs with soft cores. Next, a classification of the three types of idle bits that occur
in practical schedules and might prevent from obtaining the theoretical lower bound, is
presented.

A novel heuristic algorithm named TR-ARCHITECT is presented. TR-ARCHITECT
optimizes test architectures with respect to required ATE vector-memory depth and test
application time. TR-ARCHITECT optimizes wrapper and TAM design in conjunction.
TR-ARCHITECT handles SOCs with both hard and soft cores, works for test bus as
well as TestRail TAMs, and supports both serial and parallel schedules.

For the ITC’02 SOC Test Benchmarks, test time results of TR-ARCHITECT are
compared with two manual best-effort engineering approaches that are being used in
Philips, as well as to four other automated optimization approaches. Compared to the
manual best-effort engineering approaches, TR-ARCHITECT can reduce the required
tester-vector memory and test time up to

� �
%. This emphasizes the need for an auto-

mated optimization approach for designing SOC test architectures. TR-ARCHITECT
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test time results are comparable or better than the four other automated optimization ap-
proaches. TR-ARCHITECT works well for TAM widths less than the number of cores
in the SOC, which is an improvement over the Cluster-based approach in [GM02b].
TR-ARCHITECT requires a negligible amount of computing time and is therefore also
suitable for very wide TAMs; this is especially an improvement over the CPU-intensive
ILP/enumeration-based method in [ICM02a].



Chapter 4
Layout-Driven
Test Architecture Design

4.1 Introduction

A large number of test architecture design procedures described in literature use SOC
test time as minimization criterion. This is motivated by the fact that a large SOC typ-
ically has a large test-data set. This large test-data set will not only require Automatic
Test Equipment (ATE) with deep (hence expensive) vector memory depth per channel,
but will also have a long test-application time on the ATE. However, in an era of design-
ing multi-million transistor ICs with deep-submicron technology, the wiring of TAMs
is another important cost factor. Nowadays, many SOCs implement quite wide, dedi-
cated TAMs. Especially for such SOCs, it pays off to minimize the TAM wire length
while designing the test architecture. Short TAM wires reduce the required area cost,
performance impact, power dissipation, and cross-coupling between the TAM wires.

To optimize the TAM wire length, a test architecture design procedure should take
into account the layout positions of all cores in the SOC. Next to that, the procedure
should try to assign the neighboring cores to the same TAM as much as possible. The
reason behind this is as follows. If the layout positions of cores in an SOC are not
considered while designing the test architecture for the SOC, cores positioned at dif-
ferent corners in the SOC-layout may get assigned to the same TAM. To connect these
cores through TAM wires, TAM wires often go across the entire layout (perhaps even
multiple times). For example, Figure 4.1(a) shows a nicely balanced test schedule for
an example SOC with nine cores and � ����� =

� �
. The test schedule contains four indi-

vidual TAMs of widths
�
,

�
,

�
, and

�
. The horizontal axis in the figure represents the

test time, while the vertical axis represents the TAM width.

From the SOC test time point of view, this test schedule can be considered as a very
good schedule, as there is very little difference between the completion times of all four
TAMs. However, if one looks at the TAM wiring for the proposed architecture in an
example layout of the SOC (as shown in Figure 4.1(b)), one can clearly see that this is
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Figure 4.1: (a) An example test schedule, and (b) corresponding TAM wires connec-
tions in the SOC.

not a good test architecture. In Figure 4.1(b), different TAMs are indicated by different
type of lines and they all lie across the entire layout. Therefore, it can be concluded that
in order to optimize the TAM wire length, a test architecture design procedure should
take into account the layout positions of all cores in the SOC.

In this chapter, a simple yet effective TAM wire length cost model is presented.
The wire length of a TAM depends on its width and the ordering of cores connected to
the TAM. It is shown that the problem of determining an optimal ordering of cores
connected to a TAM is equivalent to the well-known Traveling Salesman Problem
(TSP) [GJ79] and a simple heuristic algorithm is described to solve it. Subsequently,
a layout-driven test architecture design problem is formulated, in which the layout po-
sitions of all cores in the SOC are assumed to be given. Next, a layout-driven version
of TR-ARCHITECT is presented. The layout-driven TR-ARCHITECT combines two
costs i.e. SOC test time and TAM wire length into one cost function and depending
on the weight associated with each cost, computes an optimized test architecture. The
presented TR-ARCHITECT minimizes the TAM wire length by assigning neighboring
cores as much as possible to the same TAM and by determining a layout-driven opti-
mal ordering of cores connected to the same TAM. Finally, experimental results for the
ITC’02 SOC TestBenchmarks [MIC] are presented.

4.2 Prior Work

Most papers that address the issue of minimizing the wire length of the on-chip test in-
frastructure focus on (core-level) scan chain design. Early papers in this field [Dow96,
CLH96, LCH96, NKTG97] describe the ordering of the flip flops in a single scan
chain. This problem is equal to the well-known

���
-hard Traveling Salesman Prob-

lem (TSP) [GJ79], for which many heuristic algorithms are available. In many practical
cases, multiple scan chains are designed, in order to make better use of the available
bandwidth over the IC pins to bring test patterns in and out of the circuit, and hence
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reducing the test-application time. This leads to a Multi Traveling Salesmen Problem
(MTSP), in which the scan flip flops need to be both partitioned and ordered. Barbagallo
et al. [BBG

�

98] describe a genetic algorithm to address this problem; their computa-
tional complexity seems to be an issue, as they report several hours computation time
for cores with less than 2,000 flip flops.

The only researchers, that have addressed the issue of test architecture design while
taking both SOC test time as well as TAM wire length into account are Chakrabarty
and Iyengar [Cha00a, IC02]. [Cha00a] extends Chakrabarty’s original TAM design ap-
proach that minimizes test time through ILP [Cha00b] with a rudimentary form of TAM
wire length minimization. For every pair of cores, the user’s preference for assigning
the cores to the same TAM is expressed by a 0-1 constant. The user also specifies how
many of these preferences should at least be rewarded in any solution generated by the
ILP solver. [IC02] extends this approach by adding another 0-1 constant for every pair
of cores, expressing the user’s preference for not assigning the cores to the same TAM.

While it is acknowledged that these papers were the first to add wire length opti-
mization to architecture design, their proposed solution approaches have many short-
comings. They are based on the Hybrid test bus architecture, which does not allow for
core-external testing [GM02b] as discussed in the previous chapter (see Section 3.2).
The approaches do not support optimization of TAMs and wrappers in conjunction.
They work with a fixed user-specified number of TAMs, whereas most users only want
to specify the total number of TAM wires, and leave the number of TAMs to the op-
timization algorithm. Both approaches lack a real wire length model. The binary 0-1
constants only provide a very coarse way to express preferences and do not allow for
gradation of layout distances between cores. Despite its

���
-hard character, the prob-

lem is addressed by ILP, and hence only small problem instances can be handled within
practical computation time bounds [ICM02b]. Finally, the test time penalty of taking
the TAM wire length preferences into account is rather high; up to 65% for the small
examples described in [Cha00a].

4.3 Wire-Length Cost Model

To implement an SOC test architecture in the corresponding SOC, the cores assigned
to the same TAM have to be physically connected through one or more TAM wires, as
well as the TAM wires have to be routed from the SOC pins to the respective cores and
vice versa. The total wire length required to route all TAM wires in an architecture is
refereed to as TAM wire length.

The most accurate TAM wire length can be obtained by creating an actual lay-
out of the SOC with the proposed test architecture. However, layout generation is a
computational-intensive task and usually, the SOC test architecture design is carried
out by using iterative procedures. Therefore, complete layout generation cannot be af-
forded during the test architecture design, in which many times TAM wire length needs
to be evaluated. Here, a simple TAM wire length model is presented, which, on one
hand, allows for fast computation, but one the other hand, is still sufficiently accurate
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to force test architecture optimization algorithm to assign neighboring cores as much
as possible to the same TAM.

The proposed TAM wire length model makes the following assumptions.

1. Coordinate system

� Only the first quadrant of an orthogonal coordinate system is used. This
assumption is without loss of generality; any SOC layout can be made to
meet this assumption with a simple translation. The fact that the SOC is in
the first quadrant means that all coordinates will be non-negative numbers,
which simplifies calculations.

� All coordinates are (non-negative) integers. The unit of the coordinates is
not specified, but should be consistent for all coordinates belonging to the
same SOC. This assumption is again without loss of generality, and meant
to simplify calculations.

2. SOC layout position

� The SOC layout is assumed to be a rectangle, of which the bottom-left
corner coincides with the origin � � � � � of the used coordinate system. For
rectangular SOCs, this assumption is without loss of generality, as it can be
met by applying a simple translation and/or rotation.

� The coordinates of the center of the SOC layout are specified as �#� � � � .
From this, and from the fact that the bottom-left corner is at � � � � � , one can
calculate the positions of the horizontal boundaries of the SOC layout to
be at � � �

and � � � � , while the vertical boundaries of the SOC are at) ���
and ) � � � .

3. Core layout position

� The position of each core � is specified by a pair of coordinates �3) � � � � � ,
corresponding to the center of the bounding box of the layout block of � .
All TAM wires to and from � are assumed to start and end in at �3) � � � � � .

4. Layout distances

� For calculating distances between cores, the Manhattan distance is used
instead of the Euclidean distance. This is motivated by the fact that SOC
routing channels only allow horizontal and vertical wiring. In addition, the
Manhattan distance function simplifies distance calculations. The distance
between cores � � and � 	 is � � � ��� � 	 � � � ) � � 
N) � 
 � � � � � � 
�� � 
 � .

� For calculating the distance between a core and the SOC boundary, the
shortest distance between that core and any of the SOC boundaries is used.
Hence, � ��� � � 	�� � �3) � � � � � � � 
 ) � � � � 
�� � � . This assumption is based
on the idea that the set of pins on which the TAM wires will be multiplexed
is not pre-determined.
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Note that the assumptions above are also compatible with the format of the layout
information in the ITC’02 SOC Test Benchmarks [MIC02].

In this chapter, a TAM � is fully represented by its width � � � � and an ordered list
of cores � � � � � 	 �
�
��� � �'� � ��� . The wire length for a TAM � is the sum of the distance
between the SOC boundary and core � � , the distances between all subsequent pairs of
cores in � , and the distance between core �F� � � and the SOC boundary, multiplied by the
number of wires � � � � . The total wire length � � � � of TAM � can be written as follows:

� � � � � � � � � � � � � � � � � �
� � � ��
	 � � � � � 	

� � 	 �
� � � � ���=� � � ��� (4.1)

The TAM wire length
�

for an SOC with a set of TAMs � is the sum of the wire lengths
of the individual TAMs in � and can be written as:

� � �
� &�� ��� � � (4.2)

A simple example SOC layout to illustrate the proposed TAM wire length model is
shown in Figure 4.2. The SOC contains four cores, named � ,

�
, � , and � . The SOC

has two TAMs; TAM � � of width � � � � � is connected to cores � and � , while TAM � 	
of width � � � 	 � is connected to cores

�
and � .
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Figure 4.2: Example SOC layout to illustrate the proposed TAM wire-length model.

4.4 Optimal Ordering of Cores

The wire length � � � � of a TAM � depends on its width � � � � and the order of cores
that are connected to the TAM. As the width � � � � is generally determined by the test
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architecture design algorithm, minimizing the wire length of a TAM directly relates to
determining an optimal order of cores with respect to wire length. The problem of de-
termining an optimal ordering of cores that are connected to a TAM, can be formalized
as follows:

[OOC] OPTIMAL ORDERING OF CORES
Instance: Given a TAM � with width � � � � and a list of cores �
� � � � 	 �
� � � � �=� � � � . For
each core � in the list, the center coordinates �#) � � � � � are given. Furthermore,the center
coordinates �#� � � � of the SOC for which the TAM is designed are given.
Objective: Determine an optimal order of cores � � � � 	 �
� � ��� �=� � � such that the total wire
length ��� � � required to connect � � � � TAM wires to the cores and the SOC pins is
minimized. �

Here, a two-steps approach is proposed to solve this problem. In Step 1, an optimal
ordering of the cores is determined such that their TAM interconnect wire length is
minimized. In Step 2, the overall TAM wire length is calculated by adding the wires
from the first and the last cores in the TAM to the SOC pins.

Step 1 can be mapped to a simple graph problem. Let
�

= ��� ��� � be a complete
undirected weighted graph, where vertex � 	 ��� corresponds to core � 	 and weight� ��� 	 � � on edge � 	 � � �

represents the wire -length cost of connecting cores � 	 and � � ,
i.e. � � � � � � ��� 	 � � � � . All cores have to appear in the connecting sequence once and at
most once, and have to be connected with the minimum sum of weights on the edges.
Therefore, Step 1 is equivalent to the problem of finding the shortest path through all
nodes in the complete undirected weighted graph

�
. This problem is very similar to the

well-known Traveling Salesman Problem (TSP) [GJ79], in which a traveling salesman
has to find the shortest tour through a given set of cities with pre-defined distances.

The only difference between Step 1 and TSP is that in Step 1, one needs to find the
shortest path through all cities (nodes), while TSP is after the shortest tour through all
cities. Step 1 can be transformed into an instance of TSP by adding one node with equal
distances to all other nodes. TSP is known to be

���
-hard [GJ79]. In order to avoid

intractable computation time, an efficient, yet effective heuristic algorithm should be
used. Several efficient heuristic algorithms have been proposed in literature to solve
TSP. It is not the purpose here to present a heuristic which is better than the previous
algorithms; hence a simple greedy heuristic [CLH96] is used for Step 1.

Algorithm 4.1 lists the pseudo-code for the proposed two-steps approach to solve
OOC. Step 1 (Lines 1–13) consists of an initialization, followed by an iterative loop.
In the initialization (Lines 2–5), a complete graph

� � ��� ��� � from the cores in TAM� is created. Initially, every vertex in
�

contains only one core. The weights on the
edges are assigned as the wire length cost of connecting the cores in the corresponding
nodes (Line 4). Initially, the summed wire length so far is set to zero.

In the main loop (Lines 6–13), in a greedy fashion every time two vertices which
have the minimum cost on the edge are combined to form a super vertex iteratively.
The merge order corresponds to the ordering of cores in the TAM. Once a super-vertex
is formed, the two vertices and the edges connected to them are deleted from the set
� and

�
respectively. The weights on the edges connecting the super-vertex to other
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vertices are re-calculated and re-assigned. This step continues until a single vertex
(super-vertex) is left.

Finally in Step 2 (Lines 14–15), the total wire length for the TAM � is calculated
by adding the wire length costs of connecting the first and the last cores in the TAM to
the current wire length.

Algorithm 4.1 [OPTIMALORDERDESIGN � � � � � � ��� ]
1 // Step 1: ordering of cores
2 create a complete graph � = �������	� from cores in 
 ;
3 for all edges �
� ����� do
4 ������� ��� := �	��
���������� �!������� od;
5 sum := 0;
6 while " ��"$# � do
7 find edge ��%� � for which �&����%� � � = '�(*),+�-�.������
� ;
8 merge vertices /�� and / � to form a super-vertex /�0 ��1 �
2 ;
9 sum := sum + �&��� %� � � ;

10 delete edges incident to vertices /3� and / � ;
11 � := �	435�/�� �6/ �,798:/ 0 �;1 �
2 ;
12 assign new weights on edges connecting /,0 �;1 �<2 to other vertices;
13 od;
14 // Step 2: calculation of total wire length
15 =;�>
3� := sum ?@�	��
��A�B���C���ED

�
�F?G����� D�H � H���� ;

A super-vertex represents a chain of vertices and only the ending vertices of the
chain sequence can be connected to other vertices. For example, to connect one super-
vertex to another vertex, there are two possible connections. The minimum cost of
all possible connections is considered as the weight on the edge connecting the two
vertices. Figure 4.3(a) shows an example calculation of weight on the edge between a
vertex � � and a super-vertex � � � � 	�� . The super vertex � � � � 	�� is formed by combining
vertices � � and � 	 .

v

W1 {3}v

{1,2}v {3}v

W4

W3

W2

W1

{4,5}v
{1,2,3}v

{1,2}

v {4,5}v

(Wmin 1,W2,W3,W4)

{1,2,3}

W2

(W W1, )min 2

c

c1

c

c

c

2

1

3

c3

c

c2

5

4

(a) (b)

Figure 4.3: Calculation of weight on the edge between (a) a vertex and a super-vertex
and (b) between two super-vertices.
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For this case, there are two possible connections � � � 
 � � � and ��� 	 
 � � � with costs� �
and
�N	

respectively. The minimum of
� �

and
�N	

is assigned as the weight on
the edge connecting vertices � � � � 	�� and � � . Similarly, Figure 4.3(b) shows an example
calculation of weight on the edge between two super-vertices. In this case, there are
four possible connections and the minimum cost of these four connections is assigned
as the weight on the edge connecting the two super-vertices.

4.5 Layout-Driven Test Architecture Design

Conventional test architecture design procedures do not consider any particular order-
ing of cores in TAMs. Therefore, the most trivial way to minimize the TAM wire length
for a given architecture is to calculate an optimal ordering of cores for every individual
TAM in the architecture. For this purpose, Algorithm 4.1 can be used as a stand-alone
procedure for each TAM. Figure 4.4(a) shows this flow.

Set of optimized TAMs Set of optimized TAMs

Optimal ordering of cores per TAM
Objective = min (L)

Objective = min (T) and min (L)

Layout−driven architecture designTest architecture design
Objective = min (T)

(a) (b)

Figure 4.4: (a) Conventional test architecture design with additional cores-ordering
step, and (b) the proposed layout-driven test architecture design.

Unfortunately, this scheme will not work in all cases. It is due to the fact that may
be during the architecture design itself, cores placed at very far positions in the SOC
layout are assigned to the same TAM in order to minimize the overall SOC test time.
No matter how optimal ordering of cores is carried out for such TAMs, they will always
result in large wire lengths. Therefore, to avoid such architecture designs, minimization
of test time and wire length should be done in conjunction. Figure 4.4(b) shows this
new flow and it is referred to as layout-driven test architecture design.

In the proposed layout-driven test architecture design, the objective is to minimize
both the time necessary to complete all SOC tests, as well as the wire length necessary
for the TAMs. These two minimization criteria can be conflicting. To provide a trade-
off between the overall test time and the TAM wire length, a combined weight-based
cost function � is used, where � can be defined as follows:

� ���
�
@����

�
�

(4.3)
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where, parameters
�

and
�

are user-defined inputs and represent the relative weights
associated with the SOC test time (

@
) and the TAM wire length (

�
) respectively.

The problem of layout-driven test architecture design can be formally defined as
follows:

[LDTAD] LAYOUT-DRIVEN TEST ARCHITECTURE DESIGN
Instance: Given an SOC with center layout coordinates �#� � � � and a set of cores
� . Given for each core � � � its center layout coordinates �#) � � � � � , the number of
test patterns � � , the number of functional input terminals

� �
, the number of functional

output terminals � � , the number of bidirectional terminals � � , the number of scan chains
� � , and for each scan chain � , the length of the scan chain in flip flops � ��� � . Furthermore,
the maximum number of SOC-level TAM wires � ����� , and the relative weights

�
and�

are given.
Objective: Determine a set of TAMs � (i.e. the TAM widths, ordered lists of cores
assigned to TAMs, and wrappers for all cores) such that number of used TAM wires
does not exceed ����� � and the overall cost � is minimum. �

In Chapter 3, TR-ARCHITECT proved very effective in minimizing SOC test time.
TR-ARCHITECT presented in Chapter 3 was unaware of the layout-positions of the
SOC and its cores, and consequently neither did minimize the TAM wire length nor
order the cores per TAM. To minimize the weighted sum of test time and wire length,
a new, layout-driven version of TR-ARCHITECT is presented here. In the new layout-
driven TR-ARCHITECT, assignment of cores which are far apart in the SOC-layout to
the same TAM is avoided,

Algorithm 4.2 shows the pseudo-code for the new layout-driven TR-ARCHITECT.
The layout-driven TR-ARCHITECT only contains four steps as compared to five steps
in the original TR-ARCHITECT. The layout-driven TR-ARCHITECT does not require
the CHECKEMPTYWIRE step and the reasons for this are explained in the sequel of
this section. In each step, instead of optimizing the test time as in the original TR-
ARCHITECT, the new version optimizes the total cost � . It is important to note, that
the basic concepts behind the original four steps still hold true in their new layout-
driven versions. The modification details about all four steps are given below.

Algorithm 4.2 [LAYOUTDRIVEN TR-ARCHITECT]

1 LAYOUTDRIVEN CREATESTARTSOLUTION;
2 LAYOUTDRIVEN OPTIMIZE-BOTTOMUP;
3 LAYOUTDRIVEN OPTIMIZE-TOPDOWN;
4 LAYOUTDRIVEN RESHUFFLE

In the layout-driven TR-ARCHITECT, the overall cost � � � � of a TAM � is calculated
as follows: � � � � ��� � � � � � � � ��� � � � , where � � � � and ��� � � represent the test time and
wire length for TAM � respectively. To determine the cost � � � � of a TAM � with width
� � � � , a procedure TAMCOST � � � � � � � � is used. The procedure TAMCOST � � � � � � ���
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uses Algorithm 4.1 to calculate an optimal ordering of cores. For test time, the proce-
dure TAMCOST � � � � � � ��� uses the test time calculations described in Section 3.7. To
determine the overall cost � for a given set of TAMs � , a procedure COST � � � is used.

4.5.1 Layout-Driven Creating a Start Solution

In the step LAYOUTDRIVEN CREATESTARTSOLUTION, an initial test architecture is
created which is then further optimized by the steps to follow. Algorithm 4.3 outlines
the pseudo-code for the procedure.

In Step 1 (Lines 3–7), cores are assigned to one-bit wide TAMs. If � ����� � � �$� ,
each core gets assigned; if � ��� � � � �$� , only the largest � ����� cores get assigned.
‘Large’ is here defined by the test-data volume for each core, according to which the
cores have been sorted in Line 1. In case � ��� � � � �$� , the procedure is now finished.

Algorithm 4.3 [LAYOUTDRIVEN CREATESTARTSOLUTION]
1 sort � such that

� � � ��� 	�� � � � 	�� 	�� ���	� � � � � � � � � 	 ;2
�

:= � ;
3 for 	 :=

�
to min � - /D1E2 � � � � 	 do

4
- � � � 	 := 1;

� �
:= � 	 � ;

5 TAMCOST � � � �<� 	 ;
6

�
:=
� 
 � � � � ;

7 od;
8 if
- /D1E2 � � � � then

9 for 	 :=
- /0132

�
�

to � � � do
10 �

�
:= � ;
� � ��� 	 := �

11 for all
� & �

do
12

� ��	 /��
:=
� 
 � 	 � ;

13
� �
	 /��

:=
��� � � ��
 � �
��	 /���� ;

14 �
�
	 /��

:= COST � � �
	 /�� 	 ;
15 if �

�
	 /�� �
�
�

then
16 �

�
:= �

�
	 /��
;
���

:=
� �
	 /��

;
��� 	��

:=
�

;
17 else if �

�
	 /��
== �

�
then

18 if
� � ���
	 /�� 	 � � � ��� 	 then

19 �
�

:= �
��	 /��

;
���

:=
� �
	 /��

;
� � 	��

:=
�

;
20 fi;
21 fi;
22 od;
23

�
:=
��� � ��� 	�� ��
 � ��� � ;

24 od;
25 fi;
26 if
- /D1E2 � � � � then

27
- ��� 	�	

:=
- /D1E2

� � � � ; distribute := true;
28 while

- � � 	�	 � � �
distribute do

29 � := COST � � 	 ;
30 find

� /D1E2
for which � � � /0132 	 = ��������� � � � � 	 ;

31
���

:=
� /D1E2

;
- � ��� 	 :=

- � ��� 	 �
�
;

32
� �

:=
��� � � /D1E2���
 � ��� � ;

33 �
�

:= COST � � � 	 ;
34 if �

� B
� then

35
�

:=
� �

;
- ��� 	�	

:=
- � � 	�	

�
�
;

36 else distribute = false;
37 fi;
38 od;
39 fi;

/* sort cores in non-increasing order of their
test-data volume */

// initially, the set of TAMs
�

is empty
// Step 1: iteratively, assign cores to one-bit wide TAMs
// create a one-bit wide TAM and connect a core to it
// calculate the cost for the created TAM
// add the created TAM to the set of TAMs

�
// Step 2: if cores left, add to TAMs that result in least cost
// iteratively, assign remaining un-assigned cores

// iteratively find the TAM that results in minimum cost
/* create a TAM

���
	 /��
with cores in

�
and add an

un-assigned core it */
// calculate new overall cost �

��	 /��
// if the new overall cost is less than the previous cost
// accept the proposal and update the current cost
// if the new overall cost is equal to the previous cost
// if cost of

� �
	 /��
is less than cost of previous TAM

// accept the proposal and update the current cost

// update the TAMs in
�

// Step 3: if wires left, try to add to most-occupied TAMs
// calculate the number of free wires
// iteratively, assign remaining un-used wires
// calculate the current overall cost
// find the TAM with the maximum test time
// assign one more wire to this TAM
// create the new TAM set

� �
// calculate the new overall cost
// if new overall cost does not exceed the current cost
// update TAM set

�
and number of free wires

// no more free wires distribution is possible

In case � ��� � � � �$� , there are still un-assigned cores. In Step 2 (Lines 8–25), these
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cores are added iteratively to the TAMs which result in minimum overall cost � . In
case, two TAMs result in the same overall cost (Lines 17–19) then the TAM that has
the smallest cost associated with it is considered.

In case � ��� � � � �$� , there are still un-assigned TAM wires. In Step 3 (Lines 26–
39), these wires are added iteratively to the TAM with the largest test time provided
there is no increase in the overall cost � . This procedure returns a set of TAMs � and
a number of unused wires � ������� .

The next two steps, i.e. LAYOUTDRIVEN OPTIMIZE-BOTTOMUP and LAYOUT-
DRIVEN OPTIMIZE-TOPDOWN, try to merge the cores of two TAMs into a new TAM,
such that the new TAM requires less wires and the wires that are freed up in the process
can be utilized for an overall cost reduction. The freed-up wires can reduce the overall
cost in the following two ways:

1. freed-up wires can be used by the TAM with the largest test time to minimize
@

,

2. the TAM wire length
�

is reduced as less wires need to be routed.

4.5.2 Layout-Driven Optimize BottomUp

The procedure LAYOUTDRIVEN OPTIMIZE-BOTTOMUP optimizes the overall cost �
by trying to merge the TAM with the shortest test time with another TAM, such that
the wires that are freed up in this process can be used for an overall cost reduction.
Algorithm 4.4 lists the pseudo-code for the procedure LAYOUTDRIVEN OPTIMIZE-
BOTTOMUP. It is an iterative procedure and every iteration contains two steps.

Algorithm 4.4 [LAYOUTDRIVEN OPTIMIZE-BOTTOMUP]

1 improve := true;
2 while � � � �I� � improve do
3 find

� / � � for which � � � / � � 	 � ��� � ����� � � � 	 ;
4 � := COST � � 	 ; �

�
:= � ;
� � ��� 	 := �

5 for all
� & ��� � � / � � � do

6
�
�
	 /��

:=
� / � � 
 � ;

7
- � � ��	 /�� 	 := ��� � � - � � / � � 	 � - � � 	�	 ;

8
-����� 	�	

:=
-�� � 	�	

� ��� � � - � � / � � 	 � - � � 	�	 ;
9

� �
	 /��
:=
��� � � / � � � � ��
 � � �
	 /�� � ;

10 DISTRIBUTEWIRES � � ��	 /�� � -����� 	�	 	 ;
11 �

�
	 /��
:= COST � � ��	 /�� 	 ;

12 if � �
�
	 /�� B

� 	 � � �
�
	 /�� �

�
� 	 then

13 �
�

:= �
�
	 /��

;
� � ��� 	 :=

� � � �
	 /�� 	 ;
14

- �� � 	�	
:=
-����� 	�	

;
� �

:=
� �
	 /��

;
15 else if � �

�
	 /�� B
� 	 � � �

�
	 /��
== �

� 	 then
16 if

� � � ��	 /�� 	 � � � ��� 	 then
17 �

�
:= �

��	 /��
;
� � ��� 	 :=

� � � �
	 /�� 	 ;
18

- ���� 	�	
:=
-��� � 	�	

;
� �

:=
� �
	 /��

;
19 fi;
20 fi;
21 od;
22 if �

� B
� then

23
�

:=
� �

;
- ��� 	�	

:=
- ���� 	�	

;
24 else improve := false; fi;
25 od;

// initially, improvement is possible
// while multiple TAMs and improvement possible
// Step 1: find TAM

� / � � with minimum test time
// calculate the current overall cost �
// iteratively, find merge candidate TAM

�
// create a TAM

���
	 /��
with cores in

� / � � and
�

// assign it the maximum of the widths of
� / � � and

�
// calculate the possible number of free wires
// create a new TAM set

� �
	 /��
considering this merge

// distribute all freed-up wires in the TAM set
� ��	 /��

// calculate the new overall cost �
��	 /��

// if �
��	 /��

is minimum and does not exceed �
// accept this merge proposal

// if �
��	 /��

is equal to �
�

and does not exceed �
// if new proposal has less cost than the previous one
// accept this merge proposal

// Step 2: if a merge proposal was found
// update the TAM set

�
and number of free wires

// if no proposal was found, no improvement possible
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In (Lines 3–9), the procedure finds a TAM � ��� � with minimum test time, i.e.
� � � ��� � � � 	���� � &�� � � � � . The cores in TAM � ��� � and the cores in one of the other
TAMs, say � , are merged into a new TAM, say ��� � � � , with width

	���
 � � � � ��� � � � � � � ��� .
As the new TAM ��� � � � only uses

	�� 
 � � � � ��� � � � � � � � � wires,
	�� � � � � � ��� � � � � � � ���

wires are freed up additionally to the already free wires � ������� (if any). To reduce the
overall cost � , the total freed-up wires � �������� are distributed over all TAMs in ��� � � �
using a procedure DISTRIBUTEWIRES (Line 10). The procedure DISTRIBUTEWIRES
is based on Step 3 in Algorithm 4.3. The TAM � is selected from � ; � � ��� � � such that

� � � � � is minimum and � � � � � does not exceed the overall cost � . In case two TAMs
result in the same overall cost � � � � � (Lines 15–19), the TAM that has the smallest cost
associated with it is selected. In Line 23, the merge is implemented and � is updated.

The procedure ends if all TAMs have been merged into one single TAM, or when
no TAM � can be found such that � � � � � does not exceed the current overall cost � .
This procedure returns a set of TAMs � and a number of unused wires � ������� .

4.5.3 Layout-Driven Optimize TopDown

The procedure LAYOUTDRIVEN OPTIMIZE-TOPDOWN tries to optimize the overall
cost � for a given test architecture in two subsequent steps. In Step 1, the algorithm
iteratively tries to merge the TAM with the longest test time with another TAM, such
that the SOC test time

@
is reduced. As the overall cost � linearly depends on the SOC

test time
@

, this step can reduce the overall cost. In case Step 1 does not yield cost
improvement any more, Step 2 is executed. In this step, the algorithm iteratively tries
to free up wires by merging two TAMs that do not have the longest test time, under
the condition that the merge does not increase the overall cost. The wires that are freed
up can be used for an overall cost reduction. Algorithm 4.5 lists the pseudo-code for
procedure LAYOUTDRIVEN OPTIMIZE-TOPDOWN.

In Step 1 (Lines 1–26), the procedure iteratively finds a TAM � ����� with the longest
test time. Subsequently, the procedure tries to find a TAM � � �?; � � ����� � , which could
be merged with TAM � ����� into a new TAM ��� � � � with � � ��� � � � � � � � � ��� � � � � � � � ,
such that the new overall cost ��� � � � is minimum and ��� � � � does not exceed the current
overall cost � . If such a TAM � is found, then the merge is implemented and � is
updated (Lines 21–22); else, the TAM � ��� � is put into set � ����� � and Step 2 is executed.
Step 2 (Lines 27–56) is quite similar to Step 1, apart from the following two differences:

1. as merge candidates, it only considers the TAMs in set �?; � ����� � ,

2. the width of the merged TAM � � � � � � � � is determined by a linear search between
the lower limit � � � 	���
 � � � � ����� � � � � � ��� and the upper limit � 
 � � � � ����� � �
� � � � , such that the overall cost after the merge does not exceed the overall cost

� and is minimum.

If such a search is successful, the merge is implemented and � is updated. If the
search was not successful, then the TAM � ����� is added to set � ����� � .
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Algorithm 4.5 [LAYOUTDRIVEN OPTIMIZE-TOPDOWN]

1 improve := true;
2 while � � � �I� � improve do
3 find

� /0132
for which � � � /D1E2 	 � ����������� � � � 	 ;

4 � := COST � � 	 ; �
�

:= � ;
� � ��� 	 := �

5 for all
� & ��� � � /D1E2�� do

6
�
�
	 /��

:=
� /0132 
 �

;
7
- � � ��	 /�� 	 :=

- � � /D1E2 	 �
- � � 	 ; -����� 	�	

:=
-�� � 	�	

;
8

� �
	 /��
:=
��� � � /D1E2 � � ��
 � � �
	 /�� � ;

9 DISTRIBUTEWIRES � � ��	 /�� � -����� 	�	 	 ;
10 �

�
	 /��
:= COST � � ��	 /�� 	 ;

11 if � �
�
	 /�� B

� 	 � � �
�
	 /�� �

�
� 	 then

12 �
�

:= �
�
	 /��

;
� � ��� 	 :=

� � � �
	 /�� 	 ;
13

� �
:=
� �
	 /��

;
- ���� 	�	

:=
-��� � 	�	

;
14 else if � �

�
	 /�� B
� 	 � � �

�
	 /��
== �

� 	 then
15 if

� � �
��	 /�� 	 � � � ��� 	 then
16 �

�
:= �

��	 /��
;
� � ��� 	 :=

� � � �
	 /�� 	 ;
17

� �
:=
� ��	 /��

;
- �� � 	�	

:=
-����� 	�	

;
18 fi;
19 fi;
20 od;
21 if � �

� �
� 	 then

22
�

:=
� �

;
- ��� 	�	

:=
- ���� 	�	

;
23 else improve := false;
24

� ��� � � := �
� /0132 �

;
25 fi;
26 od;
27 while

� ��� � � 	� � do
28 find

�
� ��� for which � � � /0132 	 � ����� ����� � � ��� � � � � � 	 ;

29 � := COST � � 	 ; �
�

:= � ;
� � ��� 	 := �

30 for all
� & ��� � � ��� � � 
 � � /D1E2�� 	 do

31
� �
	 /��

:=
� /0132 
 �

;
32

- � :=
- � � /D1E2 	 �

- � � 	 ;
33

- � := ��� � � - � � /D1E2 	 � - � � 	 	 ;
34 found := 
 � � � � ; - � �
��	 /�� 	 :=

- � ;
35 while � found

� � - � � �
	 /�� 	 B - � 	 do
36

� ��	 /��
:=
��� � � /0132 � � ��
 � �
��	 /���� ;

37
-��� � 	�	

:=
- ��� 	�	

�
- � �
- � ���
	 /�� 	 ;

38 DISTRIBUTEWIRES � � �
	 /�� � -����� 	�	 	 ;
39 �

��	 /��
:= COST � � �
	 /�� 	 ;

40 if � �
��	 /�� B

� 	 � � �
��	 /�� �

�
� 	 then

41 �
�

:= �
��	 /��

;
� � ��� 	 :=

� � ���
	 /�� 	 ;
42

� �
:=
� ��	 /��

; found := true;
- �� � 	�	

:=
-����� 	�	

;
43 else if � �

��	 /�� B
� 	 � � �

��	 /��
== �

� 	 then
44 if

� � � �
	 /�� 	 � � � ��� 	 then
45

� � ��� 	 :=
� � �
�
	 /�� 	 ; �

�
:= �

��	 /��
;

46
� �

:=
� �
	 /��

;
- ���� 	�	

:=
-��� � 	�	

;
47 fi;
48 fi;
49

- � ���
	 /�� 	 :=
- � �
��	 /�� 	 �

�
;

50 od;
51 od;
52 if � �

� B
� 	 then

53
�

:=
� �

;
- ��� 	�	

:=
- ���� 	�	

;
54 else

� ��� � � :=
� ��� � � 
 � � /D1E2�� ;

55 fi;
56 od;

// initially, improvement is possible
// Step 1: while � � � �J� and improvement possible
// find TAM

� /D1E2
with maximum test time

// calculate the current overall cost �
// iteratively, find merge candidate TAM

�
// create a TAM

�
��	 /��
with cores in

� /D1E2
and
�

// assign it the summed width of
� /D1E2

and
�

// create a TAM set
� �
	 /��

considering this merge
// distribute free wires (if any) in the set

� ��	 /��
// calculate the new overall cost �

��	 /��
// if �

�
	 /��
is minimum and does not exceed �

// accept this merge proposal

// if �
�
	 /��

is equal to �
�

and does not exceed �
// if new proposal has less cost than the previous one
// accept this merge proposal

// if a merge proposal was found
// update the TAM set

�
and number of free wires

// no improvement possible
// exclude

� /D1E2
from further consideration

// Step 2: while TAMs are still under consideration
// find the TAM

� /D1E2
with maximum test time

// calculate the current overall cost �
// iteratively, find merge candidate TAM

�
// create a TAM

�
��	 /��
with cores in

� /D1E2
and
�

// assign upper limit on the TAM width
// assign lower limit on the TAM width
// start with TAM width equal to lower limit
// assign the actual width through linear search
// create a TAM set

� �
	 /��
considering this merge

// calculate the possible number of free wires
// distribute free wires in the TAM set

� �
	 /��
// calculate the new overall cost �

��	 /��
// if �

�
	 /��
is minimum and does not exceed �

// accept this merge proposal

// if �
�
	 /��

is equal to �
�

and does not exceed �
// if new proposal has less cost than the previous one
// accept this merge proposal

// increase TAM width linearly

// if a merge proposal was found
// update the TAM set

�
and number of free wires

// no merge proposal was found
// exclude

� /D1E2
from further consideration

4.5.4 Layout-Driven Reshuffle

The procedure LAYOUTDRIVEN RESHUFFLE tries to minimize the overall cost of a
given test architecture by moving one of the cores assigned to the TAM with the longest
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test time to another TAM, provided that this reduces the overall cost. Algorithm 4.6
lists the pseudo-code for procedure LAYOUTDRIVEN-RESHUFFLE.

In Line 3, the procedure identifies a TAM � ����� with the longest test time. If � �����
contains only one core, the procedure is terminated. If � ����� contains multiple cores,
core
� H

with the smallest test time is identified. The procedure searches through the
other TAMs, to see if there is one of them to which core

� H
can be added without ex-

ceeding the overall cost � . If that is the case, core
� H

is moved from the TAM � �����
to this other TAM (Lines 15–17). This procedure is repeated until the TAM with the
longest test time contains only one core, or when no beneficial core re-assignment can
be found.

Algorithm 4.6 [LAYOUTDRIVEN RESHUFFLE]

1 improve := true;
2 while improve do
3 find

� /D1E2
for which � � � /D1E2 	 � ������� ��� � � � 	 ;

4 if � � /D1E2 � � � then
5 improve := false;
6 else
7 find core

� �
for which � � � � 	 := ��� � � � � /D1E2 � � � 	 ;

8 TAMFound := false; � := COST � � 	 ;
9

� ��	 /��
:=
��� � � /D1E2 � ;

� ��	 /��
: =
� /0132 � � � � � ;

10 while
� & ��� � � /D1E2 � � � TAMFound do

11
���

:=
� 
 � � � � ;

- � ��� 	 :=
- � � 	 ;

12
� �
	 /��

:=
��� � � ��
 � ��� � �
�
	 /�� � ;

-����� 	�	
:=
- ��� 	�	

;
13 DISTRIBUTEWIRES � � �
	 /�� � -����� 	�	 	 ;
14 �

�
	 /��
:= COST � � �
	 /�� 	 ;

15 if � �
��	 /�� �

� 	 then
16 TAMFound := true;
17

�
:=
� ��	 /��

;
- � � 	�	

:=
-����� 	�	

;
18 fi;
19 od;
20 if � TAMFound then
21 improve := false;
22 fi;
23 fi;
24 od;

// initially, improvement is possible
// while improvement is possible
// find TAM

� /D1E2
with maximum test time

// if it contains only one core
// no improvement possible
// else, TAM contains multiple cores
// find core

� �
in
� /0132

with minimum test time
// calculate the current overall cost �
// create a TAM set

� ��	 /��
considering this move

// iteratively, find merge candidate TAM
�

// create a TAM
���

with cores in
�

and core
� �

// update the TAM set
� �
	 /��

// distribute free wires (if any) in the set
� �
	 /��

// calculate the new overall cost �
�
	 /��

// if �
�
	 /��

is less than the current overall cost �
// accept this merge
// update TAM set

�
and number of free wires

// no merge was found
// no improvement possible

It is important to note here that, due to weight dependencies on the TAM wire length
and the SOC test time in the overall cost function � , it is possible that for the cases
with a small value of

�
and a large value of

�
, a large number of TAM wires remains

un-assigned. This is due to the fact that adding one more wire to a TAM directly
increases the wire length but does not necessarily decreases its test time. However, it is
also possible that if all the wires are added iteratively to the TAM with the longest test
time, the decrease in the SOC test time might be larger than the increase in the TAM
wire length. To account for this phenomenon, in case TAM wires are left after the
LAYOUTDRIVEN RESHUFFLE step, all unused wires are added iteratively to the TAM
with the longest test time. The new architecture is accepted only if the new overall cost
is less than the overall cost without the TAM wires distribution.

As all four steps described above always keep track of the number of unused wires,
unlike the original TR-ARCHITECT, the CHECKEMPTYWIRE step is not required in
the layout-driven TR-ARCHITECT to calculate the total number of unused wires.
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4.6 Experimental Results

In this section, experimental results for the proposed layout-driven version of TR-
ARCHITECT are presented. For experiments, five SOCs were selected from the ITC’02
SOC Test Benchmarks [MIC02]. These five SOCs were selected because they are the
only ones with a large number of cores, and for which test time continues to decrease
for increasing values of TAM width � ��� � [GM02c]. In the experiments, it has been
assumed that an SOC only contains one level of hierarchy, i.e. the SOC itself and all its
embedded cores, even though some of these SOCs originally contain multiple levels of
design hierarchy. Also, only the core-internal tests of the SOCs have been considered
i.e. the interconnect tests for the top-level SOC itself have not been taken into account.
As all cores in the SOC benchmark set have a fixed number of scan chains and lengths,
all cores are considered as hard cores. The proposed layout-driven TR-ARCHITECT is
able to generate both Hybrid test bus and TestRail architectures like the original TR-
ARCHITECT in Chapter 3. Here, only Hybrid test bus architecture results are presented,
but similar results could be obtained for TestRail architectures.

As the original benchmark SOCs do not have any data related to the positions of
cores in the SOC layout, randomly-generated, but feasible floor plans are used for the
benchmark SOCs. For the randomly generated floor-plans for all SOCs (except SOC
a586710), the TAM wire length happened to be the same order of magnitude as the
SOC test time. Therefore, the same order values were used for both

�
and
�

in the
experiments. The values of

�
and
�

were selected, such that
� � � � �

. In the
experiments, for all SOCs and all TAM widths, first a minimum weight on the test
time (

�
� �G� �
) and a maximum weight on TAM wire length (

��� �D� �
) were selected.

Iteratively, the value of
�

was increased and the value of
�

was decreased by
�G� �

.

In this section, test time and TAM wire length results for three approaches are com-
pared. The baseline approach is obtained by the original version of TR-ARCHITECT,
followed by a lexicographical ordering of the cores per TAM. The lexicographical or-
dering represents a random ordering with respect to the layout positions of the cores.
The second approach uses the test architecture obtained by the original version of TR-
ARCHITECT, followed by a layout-driven ordering of cores per TAM (as described in
Section 4.4). This approach is also depicted in Figure 4.4(a). The third, and best ap-
proach, is based on the new layout-driven version of TR-ARCHITECT; it includes both
a layout-driven test architecture design and a layout-driven ordering of cores per TAM.

Table 4.1 presents results for a range of � ����� values for five benchmark SOCs.
Columns

�
and

�
show the SOC name and the value of � ����� respectively. Columns

�

and
�
, present the SOC test time

@
(in number of clock cycles) and the TAM wire

length
�

(in units) for the original TR-ARCHITECT with random ordering of cores per
TAM respectively. Column

�
presents the TAM wire length results for the original

TR-ARCHITECT with a layout-driven ordering of cores per TAM. Test times are not
listed for this approach, as they are the same as the test times in Column 3. Columns 5
also show percentage (%) savings in TAM wire length � � � � compared to the baseline
approach.

Columns
�

and
�

present the results for the new layout-driven TR-ARCHITECT.
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Table 4.1: Experimental results for SOC test time
@

and TAM wire length
�

of original
and layout-driven TR-ARCHITECT.

Original Layout-Driven Layout-Driven TR-Architect
SOC ��� � � TR-Architect Cores Ordering�

� �


�

� 
��
�



�

d695 16 44307 86451 63339 26.7 42548 4.0 49404 42.9
24 28576 78908 69344 12.1 30132 -5.4 32892 58.3
32 21518 87860 80430 8.5 22438 -4.3 39241 55.3
40 17677 146120 137044 6.2 17677 0.0 57132 60.9
48 14608 163444 134697 17.6 16194 -10.9 56492 65.4
56 12462 136828 136828 0.0 13354 -7.2 66024 51.7
64 11033 87837 87837 0.0 11274 -2.2 73736 16.1

p22810 16 457433 541750 338608 37.5 462030 -1.0 104189 80.8
24 302737 388607 331032 14.8 298054 1.5 147340 62.1
32 222471 288573 234779 18.6 243791 -9.6 120342 58.3
40 190995 415412 355063 14.5 194193 -1.7 94460 77.3
48 157851 358205 310436 13.3 156472 0.9 143297 60.0
56 145417 427962 316938 25.9 145417 0.0 105952 75.2
64 133405 444676 338647 23.8 135571 -1.6 126948 71.5

p34392 16 1010821 118596 100316 15.4 1010821 0.0 59007 50.2
24 663193 263968 211415 19.9 698844 -5.4 137900 47.8
32 584524 259450 219562 15.4 584524 0.0 78771 69.6
40 544579 474171 362181 23.6 544579 0.0 93499 80.3
48 544579 474171 362181 23.6 544579 0.0 93499 80.3
56 544579 474171 362181 23.6 544579 0.0 93499 80.3
64 544579 474171 362181 23.6 544579 0.0 93499 80.3

p93791 16 1791638 649338 406713 37.4 1791638 0.0 289826 55.4
24 1185434 513619 376939 26.6 1211149 -2.2 263828 48.6
32 912158 1054240 759708 27.9 946879 -3.8 151676 85.6
40 718005 704481 543507 22.9 745824 -3.9 313788 55.5
48 601450 690570 538308 22.0 617782 -2.7 286215 58.6
56 528925 1125430 904718 19.6 538346 -1.8 291288 74.1
64 455738 764913 662107 13.4 480003 -5.3 181099 76.3

a586710 16 41523868 132700 132700 0.0 42117536 -1.4 52765 60.2
24 28716501 112157 98547 12.1 28716501 0.0 82064 26.8
32 22475033 228561 228561 0.0 22475033 0.0 88961 61.1
40 19048835 303370 303370 0.0 19048835 0.0 118018 61.1
48 15212440 411104 377216 8.2 15212440 0.0 323372 21.3
56 13401034 206520 206520 0.0 13401034 0.0 137550 33.4
64 12510356 232168 232168 0.0 12700205 -1.5 182267 21.5

The test times listed in Column
�

are the minimum SOC test times obtained from the
layout-driven TR-ARCHITECT. For most cases, the minimum test time was achieved
for
� � �D� �

and
��� �D���

. This was to be expected, as this value of
�

most strongly
emphasizes the test time. Columns 6 and 7 also show percentage (%) savings in SOC
test time � � @ � and TAM wire length � � � � respectively compared to the baseline
approach.

From the table, it can be seen that for the original TR-ARCHITECT, a layout-driven
ordering of cores alone itself shows the savings in TAM wire length ranging from�

to
� �

% when compared to the random ordering of cores. However, the new layout-
driven TR-ARCHITECT outperforms and shows savings up to


��
%. For SOC d695, the

savings in
�

vary from
� �

to
���

%. It is interesting to note here, that for � ����� � � �
, the

new layout-driven approach also improves the test time with
�
%. Similarly, for SOC

p22810, the test time is improved by
�'� �

% and
�D� �

% for � ��� � � � �
and � ����� � � 


respectively. For SOC p22810, the savings in TAM wire length are
� 


to

 �

%, at the
cost of an increase of between

�'� �
and

� �
% in the overall test time. Similarly for SOCs
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Figure 4.5: Variation in
@

and
�

with
�

for (a) SOC d695, � ��� � � � �
, and (b) SOC

p22810, � ����� � � 

.

p34392 and p93791, the savings in the TAM wire length vary from
� �

to

 �

% and
� 


to

 �

% respectively. The penalties in test time for these SOCs are in range of
�

to
�
%.

For SOC a586710, the savings in wire length are also comparable to the other SOCs,
and are in the range of

� �
to

� �
%.

For SOCs d695 with TAM width ����� � � � �
, Figure 4.5(a) shows the variation in

SOC test time
@

and TAM wire length
�

with parameters
�

and
�

. In the figure, the
horizontal axis shows the value of

�
and the corresponding value of

�
can be calculated

as
� � � 
 � . The vertical axis shows the value of test time and TAM wire length.

Figure 4.5(b) shows the same but for SOC p22810 and with TAM width � ����� � � 

.

Both the figures confirm that both
�

and
�

indeed work as weighting factors between
the two, often conflicting, cost factors.

For SOC p93791 with ����� � � � �
, Figure 4.6(a) shows the used layout together

with the cores assignments to TAMs as obtained by the original TR-ARCHITECT. For
the same case, Figure 4.6(b) shows the cores assignments obtained by our new layout-
driven TR-ARCHITECT with

� � �D� �
and
��� �G� �

. Cores with the same color and
pattern are connected to the same TAM. The original version of TR-ARCHITECT di-
vides the total TAM width over three TAMs as shown in Figure 4.6(a).

In this case, cores placed at different corners in the layout are assigned to the same
TAM; for example cores

�
,
� �

,
� �

,
� � � �

,
�
,
� �

and
� �

are connected to the same
TAM. The same is true for other TAMs also. This results in a long TAM wire length.
The layout-driven version of TR-ARCHITECT generates a test architecture as shown
in Figure 4.6(b). The total TAM width is partitioned over nine TAMs. It is clear from
Figure 4.6(b), that usually only the cores that are physically close to each other are
connected to the same TAM, which minimizes the TAM wire length. For this case, the
new layout-driven TR-ARCHITECT obtained a saving of


 � � �
% in TAM wire length at

an expense of
� � 


% in the SOC test time.
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Figure 4.6: Cores assignments to TAMs for SOC p93791 with � ����� � � �
, for (a) the

original TR-ARCHITECT, and (b) the new layout-driven TR-ARCHITECT.

4.7 Summary

In this Chapter, an existing SOC test architecture design approach that minimizes SOC
test time is extended with the capability to minimize the TAM wire length as well. To
calculate the TAM wire length for a given architecture, a simple, yet effective TAM
wire-length model was presented. In the presented wire-length model, the layout po-
sitions of all cores in the SOC layout were assumed to be given. The wire length of a
TAM depends on the ordering of cores connected to the TAM. Therefore, to minimize
the wire length for a TAM, an optimal ordering of cores had to be found. The problem
of determining an optimal ordering of cores with respect to the wire length of the TAM
was shown to be equivalent to the well-known Traveling Salesman Problem (TSP) and
a heuristic algorithm was described to solve it.

Subsequently, it was shown that the minimization of test time and TAM wire length
should be carried out in conjunction and a layout-driven test architecture design prob-
lem was formulated. For layout-driven test architecture design, a layout-driven ver-
sion of TR-ARCHITECT was presented. The layout-driven TR-ARCHITECT uses a
combined weight-based cost function that provides a trade-off between the two, often
competing, cost factors SOC test time and TAM wire length. The layout-driven TR-
ARCHITECT minimizes the total wire length by assigning neighboring cores as much
as possible to the same TAM.

For five benchmark SOCs, results obtained from the original TR-ARCHITECT with
both random and layout-driven ordering of cores per TAM and layout-driven TR-
ARCHITECT were compared. For all SOCs and a range of � ��� � values, the layout-
driven TR-ARCHITECT resulted in savings up to


��
% in TAM wire length at the ex-

pense of less than
�
% in test time.



Chapter 5
Control-Aware
Test Architecture Design

5.1 Introduction

In a hybrid test architecture, distinct TAMs can operate independently and hence the
cores connected to different TAMs can be tested in parallel. Depending on the TAM-
type, the cores connected to a single TAM can be tested either in series or in parallel.
Before starting a test of a core, the wrapper of the core needs to be configured in
the corresponding test mode. Setting a particular test mode in the wrapper of a core
requires a few pseudo-static test-control signals, while parallel test execution of cores
connected to different TAMs requires at-least one scan-enable signal per TAM. Based
on the nature of test-control signals, test control can be classified into two categories:

1. Pseudo-static test control.

2. Dynamic test control

Test-control signals can be generated on-chip, off-chip (by means of dedicated chip
pins), or a combination of both (by means of shift-registers). Each of these generation
types provides a trade-off between test time and area overhead. Pseudo-static test-
control signals are often provided by means of a shift-register, where as dynamic test-
control signals often require dedicated test pins. As the total number of chip pins
available for test is limited, a large number of test-control pins results in less TAM
bandwidth available for test-data transportation. Therefore, test architecture design
should take the test control into account.

This chapter deals with control-aware test architecture design for SOCs. To deal
with pseudo-static test control, two test strategies are presented and their impact on the
SOC test schedule are discussed. For dynamic test-control, a pin-constrained design
of test architectures is presented. Finally, experimental results for ITC’02 SOC Test
Benchmarks are presented.

79
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5.2 Prior Work

None of the test architecture design algorithms [Cha00a,EI01,SW02,ICM01,ICM02c,
HRC

�

02, KI02, LAFP02, GM02b, GM02a, GM02c, GM03c] available in literature ac-
counts for the signals and the time required to set up an appropriate test mode at the
start of each core test. Also, all these methods seem to assume that a sufficiently large
number of dedicated test-control pins required for scan-enable signals are available, on
top of the constrained TAM width � ��� � . As the total number of chip pins that can be
used for test purposes is limited, this assumption is often not realistic.

The only paper, that has addressed the issue of test control for SOC test architec-
tures is [AM98]. The paper considers that not the maximum number of TAM wires
� ��� � is specified, but rather the total number of test pins � that can be used during
test. The required number of test-control pins � � are taken out from the total number
of available test pins � . Hence, the maximum number of TAM wires � ��� � depends
on both � and � � following: � ����� � � ��� 
�� � ��� � � . The test time

@
can be reduced

if the TAM width � ����� is increased, and hence it is important to minimize the number
of pins � � spent on test control.

In [AM98], for test-mode settings, only one pin is used and the test modes are ap-
plied by means of a shift register. Furthermore, for each scan-enable signal, a dedicated
pin is used. Cores that work with a common scan-enable pin, need to base their scan-in
and scan-out times on the longest of all of their scan chains. This leads to a trade-off
between the number of scan-enable pins and the number of TAM wires. Less scan-
enable pins means more TAM wires; per two freed-up scan-enable pins, one can afford
one additional TAM wire and hence increase � ����� by one. In [AM98], the trade-off
problem between test time and scan-enable pins was mapped to the Interval Hitting
Problem (IHP) and a polynomial-time algorithm was presented to solve it. In the pro-
posed algorithm, cores were allowed to share scan-enable pins based on the overlap
between the feasible scan intervals for the cores.

While it is acknowledged that this paper was the first one to consider test control
for an SOC test architecture, there are several limitations of the approach described
in [AM98]. The paper only considers SOCs with all soft cores, while in practice SOCs
usually contain all hard cores or a mix of hard and soft cores. The paper does not ac-
count for the time required for the test-mode settings in cores wrappers. The approach
does not support optimization of TAMs and wrappers in conjunction. Only the basic ar-
chitectures, i.e. the serial and parallel type test architectures are addressed in the paper,
while in practice, a hybrid test architecture always performs better than correspond-
ing serial and parallel test architectures. Nevertheless, the algorithm [AM98] based on
Interval Hitting Problem (IHP) cannot be extended for hybrid test architectures.

5.3 Test-Control Classification

In an SOC test architecture, all TAMs are tested in parallel and as soon as a core
completes its test in a TAM, it is put into the ‘bypass’ mode and another core is put into
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the ‘core internal test’ mode. Therefore, the complete test schedule for an architecture
consists of several test sessions and in each test session one or more cores are tested
in different TAMs. Setting a particular test mode in the wrapper of a core and the
execution of its test require a few test-control signals. Based on the nature of test-
control signals, they can be classified into the following two categories:

� Pseudo-static test control
Pseudo-static test-control signals are those signals which remain constant during
one or more test sessions. Examples are test-mode setting signals in the wrapper
of a core.

� Dynamic test control
Dynamic test-control signals change very often during a test session and their
change-over time, i.e. the time in which a signal should change its value, is gen-
erally very small. An example is a scan-enable signal which needs to be changed
after every scan-in cycles. The change-over time for a scan-enable signal is equal
to the number of apply/capture cycles and depends on the type of test. For ex-
ample, the change-over time for a scan-enable signal is one clock cycle for a
stuck-at-fault test.

Test control signals can be generated on-chip, off-chip (by means of dedicated chip
pins), or a combination of both (by means of shift-registers). Each of these generation
types provides a trade-off between test time and area overhead. In the next sections,
the generation of both pseudo-static and dynamic test-control signals and their impact
of test time and area overhead are discussed.

5.4 Pseudo-Static Test Control

To set a core into a particular test mode, the wrapper of the core needs to be config-
ured according to the test mode. As a wrapper provides various test modes, setting
a particular test mode requires a few pseudo-static test-control signals. Pseudo-static
test-control signals cannot be generated on-chip as it is hard to determine the actual
test-mode data beforehand. As the total number of pseudo-static signals for a test ar-
chitecture is usually large, these should not be provided by means of dedicated chip
pins and instead a shift register should be used. In the Philips TestShell [MAB

�

98],
this shift register is called Test Control Block (TCB), while the proposed IEEE P1500
standard [HM, DZW

�

03] has a Wrapper Instruction Register (WIR) for this purpose.
The wrapper architecture proposed in Chapter 2 also has a WIR for this purpose (see
Section 2.3). The WIR consists of a shift and an update register.

At SOC level, these shift registers (WIRs) can be controlled either by the IEEE
1149.1 TAP [Soc00] controller or by simple pin connections. In this thesis, the use of
the IEEE 1149.1 TAP controller is considered to control all WIRs. Therefore, a WIR
can be considered as a data register connected between the TDI and TDO pins in the
corresponding boundary-scan architecture [Soc00] as shown in Figure 5.1. To set a
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particular test mode in the wrapper of a core, the corresponding WIR has to be selected
between the TDI and the TDO pins in the TAP controller. This requires that one user
instruction (e.g. PROGRAM WIR) per WIR should be defined.

Wrapper Instruction Register 
(WIR)

Instruction Register

Bypass Register

Boundary Scan Cell Chain

TDI

TCK

TMS

TRSTN
TDO

TAP

Figure 5.1: Boundary-scan architecture with a WIR as data register.

The time required to select a WIR and setting the corresponding core into its re-
spective test mode is called test-mode re-load time. The test-mode re-load time depends
on the WIR length

�������
and the length

�����
of the instruction register. If the ‘Run-

Test/Idle’ state is the default state in the TAP state diagram as shown in Figure 5.2(a),
then it requires

� � �����
clock cycles to select a WIR as a data register. The number

of transitions between the dark-shaded states in Figure 5.2(a) is a representation of
this. It is important to note that state ‘Shift-IR’ requires

�	���
clock cycles to shift the

corresponding instruction in the instruction register.
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(a) Selecting a WIR (b) Loading the selected WIR

Figure 5.2: The IEEE 1149.1 TAP state diagram.

Once a data register (WIR) has been selected then loading of the required test-
mode data into the selected data register (WIR) requires � � � ������� � clock cycles,
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which is again shown by the number of transitions between the dark-shaded states in
Figure 5.2(b).

Depending on the SOC test architecture, it is possible to make one or multiple WIR
chains as separate boundary-scan data registers. However, it is not advisable to control
each core WIR separately at the SOC level. This is due to the fact, that this will not
only require a large instruction set, but also the time to select a single WIR will be
substantial as compared to the time required to program the WIR. Therefore, there
exists a trade-off between the number of WIR chains and the time required to select
and program the wrappers of the cores in an architecture.

Here, the following two configurations are proposed for the WIRs connections at
the SOC level:

1. One WIR chain per SOC.

2. One WIR chain per TAM.

In the first configuration, all the WIRs in an SOC are concatenated to form one
WIR chain for the SOC. In the second configuration, for each TAM, only the WIRs
for the cores connected to the same TAM are concatenated to form a WIR chain per
TAM. Figure 5.3 shows the above-mentioned two configurations for an example SOC
test architecture with two TAMs, each containing two cores.

Core A

WIR

Wrapper

Core B

WIR

Wrapper

Core D

WIR

Wrapper

Core C

WIR

Wrapper

IEEE 1149.1 TAP Controller

TAM2

TAM1 TAM1

TAM2

WSI WSO

SOC

TDI TDO TCK TMS TRSTN

Core A

WIR

Wrapper

Core B

WIR

Wrapper

Core D

WIR

Wrapper

Core C

WIR

Wrapper

IEEE 1149.1 TAP Controller

TAM2

TAM1 TAM1

TAM2

WSI_2 WSO_2

SOC

TDI TDO TCK TMS TRSTN

WSI_1 WSO_1

(a) One WIR chain per SOC (b) One WIR chain per TAM

Figure 5.3: SOC-level WIRs connections for the two configurations.

For the configuration of one WIR chain per SOC as shown in Figure 5.3(a), all four
WIRs in the wrappers of four cores are concatenated to form a WIR chain with WSI
as input terminal and WSO as output terminal. In this case, the WIR chain needs to
be selected only once, but for every change in the wrapper of a core, all WIRs in the
chain need to be programmed. In contrast, for the configuration of one WIR chain per
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TAM as shown in Figure 5.3(b), there are two WIR chains. In this case, every time one
or more wrappers in a TAM need to be programmed, and only the corresponding WIR
chain can be selected between the terminals TDI and TDO and programmed.

In the sequel of this section, the impact of the test-mode re-load time on the test
schedule of a given test architecture is analyzed for both the configurations.

5.4.1 One WIR Chain per SOC

As described earlier, the complete test schedule for an architecture consists of several
test sessions and in each test session one or more cores are tested in different TAMs.

In this case as there is only one WIR chain, only one user instruction has to be
defined and the WIR chain has to be selected only once for the complete schedule.
However, the WIR chain needs to be programmed for every test session in the schedule.
If � ����� ��� � represents the length of the WIR for core � , then the total length of the WIR
chain

� �����
for an SOC test architecture with a set of cores � can be written as follows:

� ����� � �
�,& � �

� ��� � � � (5.1)

therefore, the test-mode re-load time for the first test session will be � � � � ��� � � �
� � ��� � clock cycles and for every other test session, it will be � � � � � ��� � clock cycles.
� ���

represents the length of the instruction register in the boundary-scan architecture
of the SOC.

In this case, the test time of a test session is determined by the minimum of the
test times of all cores that are being tested in that session. Due to the concatenation of
all WIRs, programming of a WIR in a TAM cannot be carried out without disturbing
the WIRs in other TAMs. Therefore, as soon as the core with the minimum test time
finishes its test, the tests of other cores have to be pre-empted (halted) in order to
program the WIR chain again. Whether the test of a core can be pre-empted or not is
determined by the requirements for the integrity of the test. Here, it is assumed that the
tests of all cores are pre-emptable. The test of a core should not be pre-empted in the
middle of the test pattern, i.e. the test should be halted after completing both scan-in
and scan-out cycles. As the cores in different TAMs can have different scan-in and
scan-out times, tests of various cores will be halted at different points in time and this
introduces a waiting time at different TAMs. To minimize this waiting time, cores in
each TAM can be sorted on the basis of the maximum of scan-in and scan-out times.

Figure 5.4(a) shows an example test schedule without any test-mode re-load time.
In Figure 5.4(a), there are three TAMs. TAM

�
with width � � contains cores � and

�
,

TAM
�

with width � � contains cores � and � , while TAM
�

with width � � contains
core

�
. In the figure, the horizontal axis represents the test time, while the vertical

axis represents the TAM width. The overall test time of the test schedule shown in
Figure 5.4(a) is determined by the test time of TAM

�
. Figure 5.4(b) shows the same

example test schedule but with test-mode re-load times. In Figure 5.4(b), first the WIR
chain is selected and programmed, then the testing of cores � , � and

�
is carried out.
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Figure 5.4: An example test schedule with one WIR chain per SOC configuration.

Core � has the minimum test time so in the first test session it finishes its test. After
completion of the test of core � , testing of cores � and

�
is halted (pre-empted) in

order to re-program the WIR chain. Due to the difference in the scan lengths, the tests
of cores � and

�
are halted at different points in time. As a result of this, there is

some waiting time at TAMs
�

and
�
. Once all tests have been halted, the WIR chain

is programmed again and the testing of cores is resumed. From Figure 5.4(b), one can
see that the overall test time is not any longer determined by TAM

�
but is determined

by the test time of TAM
�
.

5.4.2 One WIR Chain per TAM

In this case, one user instruction per WIR chain (or per TAM) has to be defined. Test-
mode re-load times for all WIR chains will primarily depend on their individual lengths
and might be different. For a TAM � , the length of the corresponding WIR chain
� ����� � � � can be written as:

� � ��� � � � � �
�,& � � ����� ��� � (5.2)

therefore, the test-mode re-load time for every test session in a TAM � is equal to
� ����� ����� � ������� � � ��� clock cycles.

Unlike the previous case, here the cores tests do not require pre-emptions as the
cores in different TAMs (WIR chains) can be programmed independently. However, if
more than one WIR chain need to be programmed at the same time, the WIR chains
are programmed sequentially. This is due to the fact that all WIR chains share the same
TDI and TDO pins in the boundary-scan architecture. The sequential programming of
WIR chains introduces a waiting time at the TAMs. In order to minimize the waiting
time at TAMs, cores in TAMs can be ordered in such a way that a minimum number
of cores are tested out at a time. Furthermore, the programming of WIR chains in the
decreasing order of cores test times can also reduce the waiting time at TAMs.
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Figure 5.5(a) shows the same example test schedule as shown in Figure 5.4(a).
This schedule does not consider any test-mode re-load time. In Figure 5.5(a), there are
three TAMs. TAM

�
with width � � contains cores � and

�
, TAM

�
with width � �

contains cores � and � , while TAM
�

with width � � contains core
�

. In the figure,
the horizontal axis represents the test time, while the vertical axis represents the TAM
width.
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Figure 5.5: An example test schedule with one WIR chain per TAM configuration.

Figure 5.5(b) shows the same example test schedule but with test-mode re-load
times for one WIR chain per TAM configuration. In the first session, cores � , � and

�

need to be tested. As core
�

has the maximum test time, the WIR chain corresponding
to its TAM is selected and programmed first. While the testing of core

�
is carried

out, the WIR chains corresponding to the TAMs containing cores � and � are selected
and programmed respectively. Core � has the minimum test time, so as soon as it has
been tested, the WIR chain corresponding to its TAM is programmed (it was already
selected during the last session). In a similar way, as soon as core � is tested out in
TAM 2, its WIR chain is selected and programmed.

From Figure 5.5(b), one can see that if cores connected to different TAMs can
be programmed independently, cores tests do not require pre-emptions. However, as
only one WIR chain can be programmed at a time, a small amount of waiting time is
introduced at TAMs

�
and

�
. The overall test time is determined by the test time of

TAM
�
.

In the next section, the generation of dynamic test-control signals is discussed. As
dynamic test-control signals, only scan-enable signals required for cores tests execution
are being considered.

5.5 Dynamic Test Control

In an SOC test architecture, cores connected to a TAM can be tested either in series
or in parallel. In case of serial testing of cores per TAM, only one scan-enable signal
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per TAM is required as only one core is tested at a time. However, for parallel testing
of cores per TAM also, only one scan-enable signal per TAM is required. This is
due to the fact that in parallel testing of cores in a TAM, the test data is shifted-in
and out from all cores serially and only the apply/capture cycle is applied to cores
simultaneously [GM02c]. Hence, a common scan-enable signal can be used for all
cores connected to the same TAM. Therefore, independent of the scheduling type per
TAM, one needs to consider only one scan-enable signal per TAM. Based on this, the
total number of scan-enable signals for an SOC test architecture is equal to the number
of TAMs in the architecture.

The generation of scan-enable signals can be accomplished in three ways:

1. on-chip generation,

2. by means of a shift-register,

3. dedicated test pins for all signals.

Each of these types provides a trade-off in terms of test time and area overhead; it
is discussed below.

5.5.1 On-Chip Generation

Figure 5.6(a) shows an example of a test protocol for a scan-testable core. In the figure,
the horizontal axis represents the time (in clock cycles), while the vertical axis shows
different types of signals. Here, it is assumed that the scan-out time for a test pattern can
be pipelined with the scan-in time for the next pattern. The signal se in Figure 5.6(a)
represents the scan-enable signal, while the signals TAM in and TAM out represent the
TAM input and output. From this figure, one can see that the signal se has to change its
value after every

	���
 � � � � � � � clock cycles. Here, � � and � � , represent the scan-in and
the scan-out time (in clock cycles) for the core respectively.

clock

scan in cycles

scan out cycles
apply/capture cycle

si si si

so so

se

clock cycles

TAM in

TAM out

se = 1; Count = Max (si, so)

Count = Count -1

         Check 
   Count == 0 ?   se = 0

yes

no

(a) (b)

Figure 5.6: (a) An example of a scan-test protocol, and (b) flow-chart for generating a
scan-enable signal.
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Figure 5.6(b) shows a flow-chart for generating a scan-enable signal. From Fig-
ure 5.6(b), one can see that the generation of such a signal requires at least one counter
and one comparator and may also require some additional glue logic. The length of the
counter depends on the maximum of the scan-in and the scan-out times of the core for
which the scan-enable signal is being generated.

The major advantage of on-chip generation of scan-enable signals is that no extra
chip pins are required for them and hence, all available test pins can be used for SOC
test time minimization. However, on-chip generation requires some extra silicon area.
To minimize the silicon area overhead due to on-chip generation of test-control signals,
hardware resources such as counters and comparators can be shared among various
cores. Unfortunately, this can have a negative impact on the overall SOC test time. This
is due to the fact that if the cores sharing the hardware resources are tested in parallel
(on different TAMs), they will be tested at a common scan frequency; the frequency
of the scan-enable signal will be determined by the maximum of the individual scan
frequencies of the cores.

In practice, the on-chip generation of scan-enable signals is not preferred. This
is due to the fact that it requires extra silicon area. Next, any design modification
may require re-generation of the scan-enable signal and the corresponding hardware.
Nevertheless, it provides less flexibility and freedom to test engineers.

5.5.2 Shift-Register Implementation

A scan-enable signal should not be provided by means of a shift register, otherwise for
every change in the signal, a new value has to be loaded into the shift register. This
may require a large amount of time. If the load time for the shift register is larger than
the change-over time for the scan-enable signal, then during the load of new data into
the shift register, the scan chains should keep their contents. This can be accomplished
by providing a hold functionality into all flip-flops in the scan chains or by stopping
all clocks. The idea of using hold functionality is expensive in terms of silicon area
and may also create some problems in timing critical paths. Also, stopping all clocks
may not be safe from the data invalidation point of view [GV02]. Therefore, it is not
advisable to have scan-enable signals coming out from a shift register.

5.5.3 Dedicated Chip Pins

This is the most preferred way of applying scan-enable signals. In this case, a dedicated
chip pin is used to provide a scan-enable signal. For a given SOC test architecture that
requires � � pins for scan-enable signals, there are two possibilities. In the first case,
one can assume that the SOC designer can free up � � chip pins as required for the
scan-enable signals. In the second case, the required � � pins are taken out from the
existing

�
� � ��� � test pins used in the architecture.

The first case is often not realistic due to the fact that it is very hard to find a large
number of chip pins on the top of the given

�
� � ��� � test pins, where � ����� is the
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total TAM width used in the architecture. Therefore, in this chapter the second case
is preferred and it is considered that for an SOC test architecture, the required number
of scan-enable pins � � is taken out from the total number of available test pins � .
Therefore, the total number of TAM wires � ����� available for test time optimization
can be written as:

� ��� � �
�
� 
 � �� � (5.3)

To minimize the number of scan-enable pins � � and hence minimize the overall test
time by means of a large TAM bandwidth � ��� � , scan-enable pins can be shared among
various TAMs. However, sharing of scan-enable pins can also lead to an increase in the
overall test time. This is due to the fact that the scan-in time for the cores connected to
the TAMs sharing a scan-enable pin will be determined by the maximum of the scan-in
times for the cores that are being tested in those TAMs. Similarly, the scan-out time for
the cores will be determined by the maximum of the scan-out times for the cores that
are being tested in those TAMs. This results in an increase in the test time of the TAMs
that share the same scan-enable pin and might increase the overall test time

@
.

Consider an example test architecture with three TAMs, where each TAM con-
tains one core only. For the case with one scan-enable pin per TAM, i.e. � � � �

,
Figure 5.7(a) shows the test-execution time for the cores in the three TAMs. In Fig-
ure 5.7(a), the horizontal axis represents the test time in clock cycles, while the vertical
axis represents the TAM. For clarity of the figure, the pipelining between the scan-out
time of a pattern and the scan-in time for the next pattern is not considered. However,
the presented analysis is also valid for the case with pipelining.

TAM 1

TAM 2

TAM 3

pattern 1 pattern 2

pattern 1 pattern 2 pattern

pattern 1pattern 2 pattern 3

apply/capture cycle

TAM 1

TAM 2

TAM 3

pattern 2

pattern 2pattern 1

pattern 1 pattern 2idle time

idle time

idle time

idle time

apply/capture cycle

pattern 1

scan-in scan-out scan-in scan-out

(a) One scan-enable pin per TAM (b) One common scan-enable pin

Figure 5.7: Example test schedule showing relationship between test time and number
of scan-enable pins.

Every scan-test pattern consists of three phases, being scan-in, apply/capture, and
scan-out. In Figure 5.7(a), a rectangular box represents a test pattern and shows these
three phases. The dotted vertical line in the middle of the box represents the execution
of the apply/capture cycle. From Figure 5.7(a), one can see that due to a dedicated
scan-enable signal for each TAM, the apply/capture cycle for a test pattern of the core
in a TAM can be executed independently of the apply/capture cycles in other TAMs.
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Figure 5.7(b) shows the same test execution but in the case, where all three TAMs
are sharing the same scan-enable signal. In this case, the apply/capture cycles on the
three TAMs should be aligned and all cores have to base their scan lengths on the
maximum of the scan lengths of the cores that are being tested. This results in idle
time [MG02] at various TAMs. From Figure 5.7(b), one can see that sharing a scan-
enable pin results in a large amount of idle time per test pattern at TAM

�
and TAM

�
.

Based on the number of test patterns for the cores connected to TAMs
�

and
�
, this can

result in a large increase in the overall test time
@

.

In this chapter, an individual scan-enable pin for each TAM is considered. To min-
imize the number of scan-enable pins, a test architecture design procedure should take
into account the pins required for scan-enable signals. The problem of test architecture
design that takes into account the number of scan-enable pins can be formally defined
as follows:

[PCTAD] PIN CONSTRAINED TEST ARCHITECTURE DESIGN
Instance: Given an SOC with a set of cores � . For each core � � � , the number of
test patterns � � , the number of functional input terminals

� �
, the number of functional

output terminals � � , the number of functional bidirectional terminals � � , the number of
scan chains � � , and for each scan chain � , the length of the scan chain in flip flops � ��� �
are given. Furthermore, a number � is given that represents the maximum number of
chip pins available for test architecture design.
Objective: Determine a test architecture with a set of TAMs � such that the overall test
time
@

is minimized and the maximum number of TAM wires � ����� used by the TAMs
in the architecture does not exceed � ��� 
 � �$� ��� � � . �

To solve the PCTAD problem, a pin-constrained version of the test architecture
design algorithm TR-ARCHITECT described in Chapter 3 is presented. The new pin-
constrained version of TR-ARCHITECT uses the same five steps as in the original
version: (1) CREATESTARTSOLUTION, (2) OPTIMIZE-BOTTOMUP, (3) OPTIMIZE-
TOPDOWN, (4) RESHUFFLE, and (5) CHECK-EMPTYWIRE. Instead of repeating the
pseudo-codes for the five steps here, only the modification details together with a brief
summary about each individual step are given below.

In the step CREATESTARTSOLUTION, an initial test architecture is created which
is then further optimized by the steps to follow. In this step, cores are assigned to one-
bit wide TAMs based on their test-data volumes. Assignment of a core to a one-bit
wide TAM requires three chip pins, one for scan-enable and two to form a one-bit wide
TAM. Therefore if � �$�"� ��� � � , each core gets assigned, else only the first ��� � � cores
get assigned. The total number of unused pins ��� � is equal to ��� 
 �

� � �$� � , where
� �$� is the number of TAMs. If there are some unassigned cores left, cores are added
iteratively to the TAM which results in a minimum overall test time. Similarly, if there
are some unused pins ��� � , TAM wires ��������� � � ��� �	 � formed by these pins are added
iteratively to the TAM with the maximum test time. This step returns the number of
unused pins ��� � and a set of TAMs � .

In the next two steps, being OPTIMIZEBOTTOMUP and OPTIMIZETOPDOWN, it is
tried to merge the cores of two TAMs into one new TAM, such that the TAM wires that
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are freed-up in the process can be utilized for an overall test time reduction. A merge
of two TAMs can result in free TAM wires because of the following two reasons:

1. a merged TAM might require less wires than the sum of the wires of the merging
candidate TAMs,

2. as a TAM requires only one scan-enable pin, a pin is also freed-up as a result of
a merge. If there is already an unused pin then by using the freed-up pin, a TAM
wire can be formed.

In the new pin-constrained version, it is important to note that if a merge of two
TAMs does not show any improvement in the overall test time

@
, the merge is still

accepted. This is due to the fact that a merge will always result in a free test pin that
can be used in the subsequent steps to form a TAM wire. These two steps also return
the number of unused pins � � � and a set of TAMs � .

In the step RESHUFFLE, an individual core is moved from the TAM with the largest
test time to another TAM, if and only if this decreases the overall test time. As com-
pared to the basic RESHUFFLE step described in Section 3.6.4 (Chapter 3), there are no
major changes in the new version.

In the last step CHECK-EMPTYWIRE, the number of redundant wires (empty wires)
are searched for all TAMs. If any empty wire is found, then it is tried to assign it to the
TAM with the maximum test time in order to minimize the overall test time. Similar
to the RESHUFFLE step, there are no major changes in the new version of this step as
compared to the basic CHECK-EMPTYWIRE step described in Section 3.6.5 (Chap-
ter 3).

5.6 Experimental Results

In this section, experimental results for four of the twelve ITC’02 benchmarks SOCs
[MIC] are presented. These SOCs were selected, as they are the only ones with a large
number of cores and for which the test time continues to decrease for increasing values
of TAM width up to � ����� � � �

. In the experiments, it has been assumed that an SOC
only contains one level of hierarchy, viz. (1) the SOC itself and (2) all its embedded
cores, even though some of these SOCs originally contain multiple levels of design
hierarchy. Also, only the core-internal tests of the SOCs have been considered i.e. the
interconnect tests for the top-level SOC itself have not been taken into account. As all
the SOCs in the benchmark set have a fixed number of scan chains and lengths, only
the test time results considering all hard cores are presented. Here, only the test time
results for hybrid test-bus architectures are presented; however similar results could be
obtained for hybrid TestRail architectures also.

For the dynamic test control, a comparison of the test time results for the following
three cases is presented.
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Table 5.1: For dynamic test control, test time results for the considered cases.
Dynamic Test Control

Original TR-Architect Pin-Constrained
SOC Test Pins No Test Control Only One SE One SE Per TAM TR-Architect�

(Case 1) (Case 2a) (Case 2b) (Case 3)� � ��� � ��� �
32 44307 86859 3 60128 2 48216
48 28576 48275 3 53381 4 32218
64 21518 37571 3 25578 4 23275

d695 80 17617 22227 3 22512 4 19094
96 14608 27562 5 27913 4 15761
112 12462 20209 5 20778 5 13652
128 11033 24692 6 12199 5 11420

32 457433 653559 2 576979 2 506147
48 302737 645901 4 398403 4 351559
64 222471 626917 6 292232 4 250862

p22810 80 190995 507242 6 228117 6 208667
96 157851 510854 7 217241 5 170893
112 145417 423974 7 177868 6 145417
128 133405 363376 7 189287 6 138927

32 1010821 1921513 4 1442956 4 1174702
48 663193 1191443 4 967132 3 832498
64 584524 1276404 4 622902 4 594231

p34392 80 544579 908899 4 544579 4 544579
96 544579 908899 4 544579 4 544579
112 544579 908899 4 544579 4 544579
128 544579 908899 4 544579 4 544579

32 1791638 3899852 3 2304109 2 1949321
48 1185434 2146012 4 1480950 2 1288461
64 912158 1527645 3 1083384 3 990373

p93791 80 718005 1792717 6 954863 3 798940
96 601450 1280548 6 737132 3 690709
112 528925 958681 4 605243 3 567009
128 455738 1076121 7 584806 4 516237

Case 1 is the original TR-ARCHITECT as described in Chapter 3, which does not
take any test control into account. In this case, the complete TAM bandwidth is used
to minimize the test time and therefore, this case has the lowest test time.

Case 2 is again the original TR-ARCHITECT but followed by the dynamic test con-
trol strategies presented in this chapter. The original TR-ARCHITECT does not consider
the test pins required for scan-enable signals and works with a given TAM width � ����� .
Therefore to account for scan-enable pins, either the TAM wires have to be stripped-
off from the TAMs in order to generate the required number of scan-enable pins or one
can assume that the SOC designer can still free-up some chip pins. As for each � ����� ,
TR-ARCHITECT results in a different number of TAMs, it is not practical to assume
that the designer can free up as many chip pins as the number of TAMs. Therefore, for
this case, two possibilities are considered. In Case 2a, it is considered that at most one
pin can be freed-up on the top of the given � � � � ����� � TAM pins, and hence one com-
mon scan-enable is used for all cores in the architecture. In Case 2b, it is considered
that wires are stripped-off from the TAMs in order to generate one scan-enable pin per
TAM.

Case 3 is the new pin-constrained version of TR-ARCHITECT. In this case, one
scan-enable signal per TAM is already taken into account while designing the test ar-
chitecture.
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Table 5.1 presents the test time (in number of clock cycles) results for the above-
mentioned cases. In the table, Column 2 lists the total number of test pins � . Column 3
presents the test time

@
for Case 1, i.e. the original TR-ARCHITECT without any test

control. Column 4 presents the test time for the original TR-ARCHITECT with only
one scan-enable (SE) pin for all TAMs (Case 2a). Columns 5 and 6 present the number
of scan-enable pins � � and the test time results respectively for Case 2b, which is the
original TR-ARCHITECT with one scan-enable pin per TAM. Column 7 and 8 present
the same results for the new pin-constrained TR-ARCHITECT. It is important to note
that the test time results presented in Table 5.1 are with dynamic test control only and
do not include test mode re-load times (pseudo-static test control).

From Table 5.1, one can see that for the original TR-ARCHITECT, as compared
to the test schedules without considering the scan-enable signals for TAMs (Case 1),
there is a large increase in the test time if one or more scan-enable pins are considered
(Cases 2a and 2b). For Case 2a in which only one scan-enable pin is used, test time
explodes due to a common scan frequency. The test times shown in Column 5 for
Case 2b in which TAM wires are stripped-off to generate one scan control pin per TAM
are slightly better. However, the new pin-constrained TR-ARCHITECT performs very
good and gives test times closer to the original TR-ARCHITECT test times as shown in
Column 3.

From the test time results shown in the table, one can conclude that a scan-enable
signal should not be shared among all TAMs in an architecture and instead one scan-
enable signal per TAM should be used. Furthermore, while designing an architecture,
taking the chip pins required for the scan-enable signals into account helps in getting
good test times. By comparing the test time results shown in Columns 3 and 8, one can
also conclude that if the dynamic test control is taken into account, on an average an
D� �

% penalty is paid in the overall test time
@

.

Next, the impact of pseudo-static test control is analyzed for the cases with one
scan-enable signal per TAM, i.e. Cases 2b and 3. For pseudo-static test control, both
the strategies presented in Section 5.4, i.e. one WIR chain per SOC and one WIR
chain per TAM, are considered. Here, a seven-bit long ��� ����� � � � WIR for every
core in all SOCs and a six-bit long � ����� � � � instruction register are considered.
The seven-bit long WIR represents a typical WIR as described by the IEEE P1500
standard [DZW

�

03], while the six-bit long instruction register ensures that sufficient
instructions (

� � � � �
) can be used. Table 5.2 presents the modified test time (in number

of clock cycles) results considering the pseudo-static test control.

Column 3 in Table 5.2 shows the test time results for the original TR-ARCHITECT
(Case 2b) with one WIR chain per SOC, while Column 6 shows the same but now
with one WIR chain per TAM. Column 4 shows the test time results for the new pin-
constrained version of TR-ARCHITECT (Case 3) with one WIR chain per SOC, while
Column 7 shows the same but with one WIR chain per TAM. Columns 5 and 8 show
the savings (%) in test time obtained from the new pin-constrained TR-ARCHITECT as
compared to the original TR-ARCHITECT under the same test control settings.

From Table 5.2, one can see that if the pseudo-static test control is considered,
the overall test time is increased. This was to be expected, as a few clock cycles are
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Table 5.2: For pseudo-static test control, the modified test time results considering one
scan-enable per TAM.

Pseudo-Static Test Control
SOC Test Pins One WIR Chain Per SOC One WIR Chain Per TAM�

Original Pin-Constrained Original Pin-Constrained
TR-Architect TR-Architect TR-Architect TR-Architect

(Case 2b) (Case 3) (Case 2b) (Case 3)� � 
�� ��� 
 � � 
�� ��� 

32 67701 49259 27.2 60150 48266 19.8
48 62528 33221 46.9 53417 32247 39.6
64 26560 24170 9 25635 23304 9.1

d695 80 23345 20229 13.3 22555 19123 15.2
96 29603 17108 42.2 27949 15790 43.5

112 21730 14230 34.5 20814 13681 34.3
128 12795 12280 4.0 12286 11442 6.9

32 593278 510693 13.9 577071 507238 12.1
48 407029 384493 5.5 398467 351644 11.8
64 316604 275037 13.1 292282 250891 14.2

p22810 80 245494 237232 3.4 228146 208773 8.5
96 236894 181799 23.3 217284 170936 21.3

112 194957 167584 14.0 177897 145439 18.3
128 200667 155345 22.6 189323 139019 26.6

32 1453953 1216373 16.3 1443069 1174724 18.6
48 993060 843673 15.0 967182 832527 13.9
64 628853 607466 3.4 623015 594260 4.6

p34392 80 558341 558341 0 544601 544601 0
96 558341 558341 0 544601 544601 0

112 558341 558341 0 544601 544601 0
128 558341 558341 0 544601 544601 0

32 2352311 1957867 16.8 2304152 1949462 15.4
48 1546032 1288926 16.6 1480986 1289318 12.9
64 1102145 1018563 7.6 1083455 990409 8.6

p93791 80 1036648 858032 17.2 954885 798962 16.3
96 781491 707276 9.5 737161 690766 6.3

112 631883 576136 8.8 605272 567052 6.3
128 635183 539643 15.0 584835 516266 11.7

required for test-mode re-load time and pre-emptions of cores tests or serial program-
ming of WIR chains introduce some waiting time at TAMs. The test time results with
one WIR chain per TAM are better than those with one WIR chain per SOC. From
Table 5.2, one can observe that the new pin-constrained TR-ARCHITECT performs
well and results in savings up-to

� �
% in test time if compared to the original TR-

ARCHITECT with the same test-control settings.

For SOC d695 and � =
� �

, Figure 5.8(a) shows the test schedule with one scan-
enable per TAM and without test-mode re-load time, as obtained by the new pin-
constrained TR-ARCHITECT. In the figure, the horizontal axis represents the test time,
while the vertical axis represents the TAM width. The numbered boxes depict tests of
various cores and the number inside a box represents the core ID. The number shown
at the end of each TAM represents its test time. In the shown schedule, there are four
TAMs and hence four pins are required for scan-enable signals. The remaining

� �
pins

result in a total TAM width � ��� � � � �
, which is distributed among four TAMs in the

following fashion:
� � � � � � � � � � � � �

. The total test time for the schedule is
determined by TAM 1 and is equal to

��� � � �
clock cycles.

Figure 5.8(b) shows the same schedule but with test-mode re-load times using one
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Figure 5.8: Test schedules obtained from the pin-constrained TR-ARCHITECT for SOC
d695 with � =

� �
.

WIR chain per SOC strategy. From this figure, one can see that every time a core fin-
ishes its test, tests of all cores are halted and the complete WIR chain is re-programmed.
This leads to some waiting time at TAMs (indicated by white space) and an increase in
the overall test time. For the shown case, there is an


G� �
% increase in the overall test

time
@

as compared to the test schedule shown in Figure 5.8(a).

5.7 Summary

In this chapter, the test control for SOC test architectures is described. The term test
control refers to controlling the mode of operation of all cores and the execution of their
tests. Based on the nature of test-control signals, it is shown that test control can be
divided into two categories: (1) pseudo-static test control, and (2) dynamic test control.
Test-control signals can be generated in three ways: (1) by on-chip hardware, (2) by
means of a shift-register, and (3) by dedicated chip pins. Each of these types provides
a trade-off between the test time and the area-overhead.

Pseudo-static test control refers to setting test modes in the cores wrappers between
various test sessions. As pseudo-static signals do not change very often, shift-register
based generation of test-control signals is preferred for them. To account for the time
required for test mode re-loads, two test strategies are presented: (1) one WIR chain
per SOC, and (2) one WIR chain per TAM. Each of these strategies provides a trade-off
between the time to select a WIR chain and programming the WIR chain.

Dynamic test control refers to controlling the execution of cores tests, i.e. scan-
enable control. As scan-enable signals change very often and the change-over time
for them is very small, they cannot be provided by means of a shift-register and instead
dedicated chip pins are preferred. As there is a limited number of chip pins available for
test, a large number of scan-enable pins will result in less TAM bandwidth available
for test time minimization. Therefore, SOC test architecture design should take into
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account the pins required for scan-enable signals. For this purpose, a pin-constrained
version of TR-ARCHITECT is presented.

Experimental results for the ITC02 benchmark SOCs show that as compared to
the test times obtained from the original TR-ARCHITECT, if the dynamic test control
(scan-enable signals) is taken into account, there is a large increase in test time. It is
shown that sharing a scan-enable signal among TAMs is not a good idea and instead,
one scan-enable signal per TAM should be used. Similarly if the pseudo-static test
control (test-mode re-load time) is considered during test scheduling, it also increases
the overall test time. For pseudo-static test control, one WIR chain per TAM strategy
works better than one WIR chain per SOC strategy. The presented new pin-constrained
version of TR-ARCHITECT performs very good and can save up to 46% in test time if
compared to the test times obtained from the original TR-ARCHITECT with the same
test control settings.



Chapter 6
User-Constrained
Test Architecture Design

6.1 Introduction

All test architecture design algorithms published so far, compute an optimized SOC test
architecture fully autonomously. This can lead to situations where test architectures
proposed by the optimization procedure might not be acceptable to SOC designers
due to some design constraints which were either not modeled or very hard to model
directly in the optimization procedure. For example, a wrapped third-party IP core
requires a specific TAM width; analog and digital cores or cores running at different
clock frequencies need to be assigned to separate TAMs; some test architecture design
constraints are inherited from a previous SOC design. Ideally, there exists a whole
spectrum of user constraints, in which at one extreme is the fully specified architecture
by the user and at the other extreme the fully designed architecture by the optimization
procedure. User constraints might be application- or design-specific and hence hard to
generalize into general cost functions or constraints.

Therefore, SOC designers and test engineers do not always want to leave their entire
SOC-level test architecture design to an optimization tool. They often want to influence
the number of TAMs, the width of the TAMs, the assignment of cores to TAMs, and/or
the cores ordering within a TAM. As the SOC designers have the ultimate decision
power over their SOC, a test architecture optimization tool can only become successful
in the SOC designer community if it is able to satisfy their constraints. Currently, there
are no test architecture design procedures available in literature which can take user
constraints into account and design the test architecture accordingly.

This chapter presents a novel Test Architecture Specification (TAS) language that
can be used to specify a full or partial test architecture in a concise way. The usage
of the TAS language is illustrated by means of an example. In addition, it is described
how the original version of TR-ARCHITECT has been modified and extended in order
to accommodate a wide range of user constraints. All architecture parameters specified
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by the user in an input TAS file to TR-ARCHITECT are considered as constraints, while
everything which is not specified, is left for the tool to optimize for minimal test time,
TAM wire length, etc. This extension yields a whole spectrum of use scenarios for
TR-ARCHITECT. The spectrum ranges from an empty user specification (in which
the tool fully optimizes the resulting test architecture) to a full-user specification (in
which the tool only calculates the corresponding test schedule and associated costs),
and everything in between. Finally, the operation of the modified TR-ARCHITECT
is illustrated by means of an example and experimental results for the ITC’02 SOC
TestBenchmarks are presented.

6.2 Prior Work

Various test architecture design algorithms have been described in literature [Cha00b,
ICM01, HCT

�

01, ICM02b, ICM02c, ICM02d, GM02b, GM02c, KI02, LF03, GM03d].
For a given SOC with a given TAM width � ��� � , these algorithms determine the
number of TAMs, the widths of the TAMs, and the assignment of cores to TAMs
such that the total SOC test time is minimized. Some algorithms, in addition to test
time minimization, also allow for minimization of the number of TAM wires or their
lengths [GM03c], or take additional constraints into account, such as the maximum
power dissipation during testing [HRC

�

02], or test control [GM03b]. It important to
note that in hindsight, some of the these papers [Cha00b, ICM01, EI01] also provide a
partial solution to the issue addressed in this chapter, as they correspond to designing a
test-access architecture in the case of a user-specified number of TAMs.

However, the methods described in these papers have the following shortcomings.
These methods only allow for one fixed number of TAMs, and do not allow the user
to specify a minimum and/or maximum number of TAMs. Next, these methods only
work if all TAM widths are fully specified, and do not allow for only some specified
TAM widths, or minimum and/or maximum TAM widths. In addition, these methods
only work for TAMs of the type test-bus [VB98] (which only allows mutually exclusive
access to cores in the same TAM) and hard cores (i.e. cores for which the number and
length of internal scan chains are fixed). In practice, one also need to work with TAMs
of the type TestRail [MAB

�

98], which do not constrain access to multiple cores in
the same TAM to be mutually exclusive, and a mix of hard and soft cores [GM03d].
Furthermore, these methods lack the ability to accommodate user-specified core-to-
TAM assignments and ordering constraints.

6.3 Test Architecture Specification

To model user constraints in a concise and un-ambiguous way, a Test Architecture
Specification (TAS) language is defined in this section. With such a language, a user
should be able to fully control all parameters that constitute a test architecture. Hence
such a specification should be able to describe the following elements:
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� A fixed number of TAMs, or a minimum and/or maximum number of TAMs

� For each user-specified TAM in the architecture:

– A fixed TAM width, or a minimum and/or maximum TAM width

– A maximum number of cores to be assigned to this TAM

– A list of user-assigned cores

– A full or partial order of the user-assigned cores

� For remaining (i.e. unassigned) cores:

– A list of TAMs to which this core is allowed to be assigned.

The proposed Test Architecture Specification language can be used both to specify
user constraints for test architecture design (i.e. as input to a test architecture design
tool such as TR-ARCHITECT), as well as to describe an optimized architecture (i.e.
as output from the tool). This section describes the TAS language in detail. First, all
keywords of the TAS language are described. Next, the usage of the TAS language is
illustrated by means of an example.

6.3.1 Keywords

The TAS language has the following keywords:

� SocName: Unique identifier of the SOC

� TotalTAMs: The total number of TAMs in the architecture. The user can either
specify a fixed number, or one can specify a minimum and/or a maximum bound
on the number of TAMs. The two bounds are separated by a hyphen ����
 � � .
If a user specifies a fixed number of TAMs or a minimum bound on the number
of TAMs, then one has to specify those TAMs subsequently. However, if a user
only specifies an maximum bound on the number of TAMs, then one does not
need to specify any TAM. Please note that these assumptions are just to avoid
any ambiguity in the specification.

Per TAM, the following information is specified:

� TAM: Uniquely identifying TAM name. This can help a test architecture design
algorithm to keep this TAM separate from other TAMs

� Width: A user can either specify a fixed TAM width, or a minimum and/or a
maximum bound on the TAM width. The two bounds are separated by a hyphen
��� 
 � �

� MaxCores: The maximum number of cores that are allowed to be connected to
this TAM
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� FixCores: A list (c � , c � , ..., c � ) of user-assigned cores to the TAM.
Core names in the list are separated by commas

� Order: Order (c � - c � - ...- c � ) of the cores connected to the TAM.
Core names in the list are separated by hyphens. A user can specify a partial or
full ordering of cores. The Kleene [Koz90] star operator ( � ) is used to denote
zero or more unspecified cores in the order list; similarly, the Kleene [Koz90]
plus operator (+) is used to denote one or more unspecified cores.

For each of the remaining (i.e. unassigned) cores in the SOC, the following information
can optionally be specified:

� Core: Uniquely identifying core name

� FlexTAMs: ru � , ru � , ..., ru � : A list of TAMs to which this core is
allowed to be assigned. The TAMs in the list are separated by commas. If a user
does not want to assign a core to the user-specified TAMs, but instead to a TAM
created by the optimization algorithm, then one can use a reserved TAM name
rx. Hence, this name should not be used to identify a user-specified TAM.

The TAS language allows for white spaces and blank lines. Furthermore, text fol-
lowing ‘//’ on a line is considered as comment.

6.3.2 Example

Figure 6.1 illustrates the usage of the TAS language by means of an architecture ex-
ample for SOC p22810, taken from the set of ITC’02 SOC Test Benchmarks [MIC02].
Please note that the line numbers in the example are not part of the TAS language, but
are added here for explanation purposes only.

Example 1 [p22810.tas]
1 SocName p22810

2 // TAM Specification
3 TotalTAMs 3-5
4 TAM ru1 Width 4- MaxCores 3 FixCores : 18 Order : 18-+
5 TAM ru2 Width 1-9 MaxCores 4 FixCores : 4,5 Order : *-5-*-4-*
6 TAM ru3 Width 5- MaxCores 5 FixCores : 6,7,9 Order : *-9-7-6-*

7 // Core Specification
8 Core 2 FlexTAMs : ru2,ru3,rx

Figure 6.1: Example TAS file for SOC p22810.

The first line in the TAS example identifies the SOC, viz. SOC p22810. Line 3
specifies the total number of TAMs in the architecture. In this example, the minimum
number of TAMs is specified as

�
, while the maximum number of TAMs is specified

as
�
.
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The next three lines (Lines 4–6) specify three TAMs, corresponding to the min-
imum number of three TAMs specified in Line 3. Line 4 specifies TAM ��� � . Its
minimum specified width is

�
; no maximum width is specified. The maximum number

of cores that are allowed to connect to this TAM is set to
�
. Core

��

is specified to be

the first core in this TAM. During test architecture design, the used architecture design
algorithm has to add one or more cores (as specified by the Kleene [Koz90] plus (+)
operator) after core

��

, as long as TAM ��� � in total does not have more than three

cores (as specified by the MaxCores constraint).

TAM ��� � is specified in Line 5. Its width is specified to be between
�

and
�
. TAM��� � can contain at most four cores, and cores

�
and

�
are amongst those. The specified

order of the TAM states that core
�

comes in front of core
�
, while additional cores (if

any) can be placed anywhere in front, in between, and after those two cores. Line 6
gives a similar specification for TAM ��� � .

In total, only six cores are pre-assigned to the three user-defined TAMs ��� � , ��� � ,
and ��� � . From [MIC02], it is known that SOC p22810 contains 28 cores (in the bench-
mark set, cores are referred to as modules). Therefore, the assignment of the remaining���

cores is left to the test architecture design algorithm, within the constraints specified
in Lines 8–9. Line 8 states that core

�
is only allowed to be assigned to either TAM��� � or TAM ��� � or TAM ��) , which represents a TAM created by the test architecture

design algorithm itself.

6.4 Test Architecture Design

The problem of test architecture design that takes the user’s constraints (specified by
means of a TAS file) into account can be defined as follows:

[UCTAD] USER-CONSTRAINED TEST ARCHITECTURE DESIGN
Instance: Given is an SOC with a set of cores � . For each core � � � , the number of
test patterns � � , the number of functional input terminals

� �
, the number of functional

output terminals � � , the number of functional bidirectional terminals � � , the number of
scan chains � � , and for each scan chain � , the length of the scan chain in flip flops � ��� �
are given. Furthermore, a TAS file that contains user constraints, and a number � ��� �
that represents the maximum number of SOC-level TAM wires, are given.
Objective: Determine a test architecture with a set of TAMs � such that (i) the sum of
individual TAM widths does not exceed � ����� , (ii) all user constraints are satisfied, and
(iii) the overall SOC test time

@
(in clock cycles) is minimized. �

TR-ARCHITECT proved effective in minimizing the overall test time of SOCs. The
original version of TR-ARCHITECT (presented in Chapter 3) was unaware of user
constraints. To solve the UCTAD problem, a new user-constrained version of TR-
ARCHITECT is presented here. This version addresses all user constraints that can be
expressed in the TAS language.

Figure 6.2 shows the input and output files used in the user-constrained version of
TR-ARCHITECT. There are three inputs to the tool. The user options contain informa-
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tion such as top-level TAM width � ����� , TAM type, architecture type, etc. The SOC
data file contains the information about the SOC, coded in “.soc” format introduced
for the ITC’02 SOC Test Benchmarks [MIC02]. New is the (optional) input TAS file,
which contains the user constraints in the TAS language.

TR Architect

E C D

AB

−tamtype
−debug
−schedule
−arch

−layout

−testpin
−scanchain

−soc 

Modules 2 Input 18 Out
Modules 2 Test 1 Pat
Modules 2 Test 2 Pat

Modules 1 Input 8 Out
Modules 1 Test 1 Pat
Modules 1 Test 2 Pat

 7:  TAM ru3 Width 1−3
 6:  TAM ru2 Width 4−7 
 5:  TAM ru1 Width 5  
 4:  TotalTAMs 3−5
 3: // TAM Specification 

 1:  SocName d695
 2:  TotalModules 10

 7:  TAM ru3 Width 1−3
 6:  TAM ru2 Width 4−7 
 5:  TAM ru1 Width 5  
 4:  TotalTAMs 3−5
 3: // TAM Specification 

 1:  SocName d695
 2:  TotalModules 10

SocName d695
TotalModules 10

User’s modifications

SOC data file

Output TAS file

User options

Test scheduleTest architecture

(.soc) (.tas)

(.tas)

Input TAS file

A B

EC

F

D

SOC
F

(a) (b) (c)

Figure 6.2: User-constrained TR-ARCHITECT version.

TR-ARCHITECT yields (a) a test architecture which is optimized within the bounds
of the user constraints, (b) the optimal test schedule for this architecture, and (c) the
corresponding new TAS file. If for some reason the user does not like the proposed
architecture, the user can take the output TAS file, modify it, and feed it back again for
a new TR-ARCHITECT run.

Apart from the ordering constraints, all constraints specified in an input TAS file
can be divided into three distinct domains. This division is specially useful for includ-
ing user constraints in the various optimization steps of TR-ARCHITECT. These three
domains along with the user constraints they contain, are described below.

6.4.1 User Constraints

In the user-constrained version of TR-ARCHITECT, for a TAM � , � � � � denotes its
width of � , � � � � denotes the set of cores connected to it, and � � � � denotes its test time.
For the architecture parameters specified in the TAS file, the following symbols are
used.

� � � � ��� denotes the set of user-specified TAMs
� � � and � 
 denote the minimum and maximum bounds on the number of TAMs

in the architecture



6.4. Test Architecture Design 103

� For each TAM ��� � � � � ��� ,
– � � � ��� � and � 
 � ��� � denote the minimum and maximum bounds on its

width,
– � ����� � ��� � denotes the maximum number of cores that can be assigned to it,
– � � � ��� � ��� � denotes the set of cores specified by the user to be assigned to it.

Apart from the ordering constraints, the user constraints in the TAS input file can
be categorized into ‘minimum’ and ‘maximum’ constraints in the following three do-
mains.

1. Number of TAMs
� � ��������� � ��� � ��� �	� � � K � �$� � ��
 � � � ��� � � (6.1a)
� � ������� � ������� ��� �	� � �$� K�� 
 (6.1b)

Constraint 1 ��� � means that the total number of TAMs � �$� in the architecture
should be more than or equal to the minimum bound � � specified with regard to
the number of TAMs. Furthermore, the TAMs in the architecture (set � ) should
include the TAMs specified by the user (set � � � ��� ). Constraint 1 ����� means that
the total number of TAMs � �$� in the architecture should be less than or equal to
the maximum bound � 
 specified with regard to the number of TAMs the number
of TAMs.

2. TAM widths
� � ��������� � ��� � ��� � � � ��� ��� � K � � ��� � � � ��� � � � � ��� (6.2a)
� � ������� � ����� � ��� � � � � ��� � K � 
 � ��� � � � ��� � � � � ��� (6.2b)

Constraint 2 ��� � means that for all user-specified TAMs, width � � ��� � of a TAM��� should be more than or equal to the minimum bound � � specified on its width.
Similarly, Constraint 2 ��� � means that for all user-specified TAMs, width � � ��� �
of a TAM ��� should be less than or equal to the maximum bound � 
 specified
on its width.

3. Cores in TAM
� � �
����� � ����� � ��� �	� � � � ��� � ��� � � � � ��� � � � ��� � � � � ��� (6.3a)
� � ��������� � ��� � ������� � � � ��� � �DK � ����� � ��� � � � ��� � � � � ��� (6.3b)

Constraint 3 ��� � means that for all user-specified TAMs, cores connected to a
TAM ��� (set � � ��� � ) should at least contain the cores specified by the user (set
��� � ��� � ��� � ) for this TAM. Similarly, Constraint 3 ����� means that for all user-
specified TAMs, the total number of cores � � � ��� � � connected to a TAM ��� should
not exceed the maximum number of cores that are allowed � ����� � ��� � to be con-
nected to this TAM.

Next, a user-constrained version of TR-ARCHITECT is presented. The new user-
constrained TR-ARCHITECT takes into account the above-described user constraints
while designing a test architecture.
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6.4.2 User-Constrained Test Architecture Design

Figure 6.3 depicts the steps of the heuristic algorithm of TR-ARCHITECT. Figure 6.3(a)
shows the five steps of the original version of TR-ARCHITECT as described in Chap-
ter 3.

Start

0*: CreateTasArchitecture

2*+3*: Optimize-Bottom2Top

4*: Reshuffle

End

1*: CreateStartSolution
1     , 2     ,3min min min

Constraints Satisfied

1     , 2max max

3max

6*: Reorder
Ordering

5*: Check-EmptyWire

Start

2: Optimize-BottomUp

3: Optimize-TopDown

4: Reshuffle

End

1: CreateStartSolution

5: Check-EmptyWire

(a) Original (b) New, user-constrained

Figure 6.3: Algorithm steps in (a) the original version and (b) the new, user-constrained
version of TR-ARCHITECT.

The algorithm steps of the new, user-constrained version of TR-ARCHITECT are
depicted in Figure 6.3(b). It contains a modified version of the five steps of the original
algorithm. A new, pre-initialization step has been added: Step 0

H
, CREATETASARCHI-

TECTURE. This step ensures that all ‘minimum’ user constraints (i.e. Constraints 1 ��� � ,
2 ��� � , and 3 ��� � ) are met. In Steps 0

H
and 1
H
, the algorithm temporarily ignores Con-

straints 1 ����� , 2 ��� � , and 3 ����� . The reasoning behind this strategy is that some ‘max-
imum’ constraints might be met automatically by TR-ARCHITECT, i.e. without addi-
tional actions. In order to ensure that these ‘maximum’ constraints are met in the final
architecture, the subsequent steps of the algorithm have been modified.

In the original algorithm, steps 2 and 3 are the last ones in the sequence to influ-
ence the number of TAMs and the TAM widths. In the new algorithm, they have been
merged into one combined Step 2

H
+3
H
: OPTIMIZE-BOTTOM2TOP that guarantees that

Constraints 1 ��� � (the maximum number of TAMs) and 2 ��� � (maximum TAM widths)
are met. Step 4 is the last step to influence the number of cores per TAM. Its new
version, step 4

H
, has been modified such that it now enforces the corresponding Con-

straint 3 ����� . Step 5
H

checks for the empty wires at all TAMs. Finally, a new step:
step 6
H

handles the order constraints. In the remainder of this section, all algorithm
steps are described in more detail.

Figure 6.4 shows the sequence of actions performed in CREATETASARCHITEC-
TURE. First, the TAS file is parsed and checked for syntax errors. Subsequently, the
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user specification is checked for inconsistencies, such as a sum of minimum widths
of the user-specified TAMs exceeding � ����� or if a core is assigned to multiple user-
specified TAMs. In case of errors or inconsistencies, the tool sends appropriate error or
warning messages and then exits. Otherwise, an initial test architecture consisting only
of user-specified TAMs is created. All user-specified TAMs get assigned their min-
imum number of wires, and all their user-assigned cores. The resulting architecture
meets all ‘minimum’ user constraints (1 ��� � , 2 ��� � , 3 ��� � ); subsequent steps maintain
this as invariant. Furthermore, all ‘maximum’ user constraints (1 ��� � , 2 ��� � , 3 ����� ) will
be satisfied during next five steps.

Parsing + Syntax Check

Consistency Check

Error?

Inconsistency?

Create Initial Architecture

Exit

Yes

Yes

No

No

Figure 6.4: Sequence of actions performed in CREATETASARCHITECTURE.

In the step CREATESTARTSOLUTION, the remaining cores and wires (if any) are
added to the architecture. First, the cores which are completely free, i.e. the cores
which do not have a FlexTAMs constraint, are assigned to one-bit wide TAMs. These
cores are assigned in the decreasing order of their test-data volume. If there are more
wires than such cores, each core gets assigned; else some of them remain unassigned.
These remaining cores, if any, are iteratively assigned to TAMs, such that the assign-
ment yields the smallest increase in overall test time. Subsequently, cores with Flex-
TAMs constraints are assigned to TAMs according to the same algorithm, while satisfy-
ing those constraints. Finally, if there are some unused wires left, these wires are added
iteratively to the TAM with the maximum test time, while satisfying Constraint 2 ��� �
regarding their maximum TAM width.

Steps OPTIMIZE-BOTTOMUP and OPTIMIZE-TOPDOWN try to merge a pair of
TAMs into a new TAM, such that the new TAM requires less wires. The freed-up wires
can be used for an overall test time reduction. In order to maintain the user-specified
TAMs in the architecture, a merge of two user-specified TAMs is not allowed. In
addition, it is taken into account that a user-specified TAM width (Constraint 2 ��� � ), if
any, is not violated while assigning the TAM width.

Steps 2
H

and 3
H

might initially finish with a number of TAMs which is too large,
and hence violate Constraint 1 ����� , if existing. If that is the case, more TAMs need to be
merged in order to get the number of TAMs down. Therefore, an iterative loop around
steps 2

H
and 3
H

has been added, as shown in Figure 6.5. The acceptance criterion for
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TAM merging is relaxed from “no increase in overall test time” (i.e.
@ � ��� K @ � � 	 ;�����

) to “at most
�

% increase in overall test time” (i.e.
@ � ��� K � ��� � � ��� � ��� @ � � 	 ;� � � ). The relaxation percentage

�
is iteratively increased, until the number of TAMs

meets the user constraint. Forcing the number of TAMs down to the user-specified
maximum in this way does increase the compute time of TR-ARCHITECT, and might
also negatively influence the overall test time.

Initially     := 0

Optimize-BottomUp (with T      < (1+   /100).T     )

Optimize-TopDown (with T      < (1+   /100).T     )

|R| > R  ?

No

:=α α +1

α

u
Yes

αnew old

αnew old

Figure 6.5: Sequence of actions performed in OPTIMIZE-BOTTOM2TOP.

In step 4
H

RESHUFFLE, individual cores are moved from one TAM to another.
This step was originally meant only for fine-tuning of the test architecture with respect
to test time. Now, it is also used to resolve violations of Constraint 3 ��� � , i.e. the
user-specified maximum number of cores per TAM. First, the TAMs are identified
for which Constraint 3 ��� � is violated. Iteratively, excess cores from these TAMs are
removed and re-assigned to other TAMs, such that Constraint 3 ��� � is not violated and
the corresponding increase in overall test time is minimal. If the TAM from which
cores are removed is the TAM with maximum test time, the overall test time is also
minimized. Subsequently, the procedure tries to improve the overall SOC testing time
in the same way as the original version of RESHUFFLE, that is iteratively moving the
core with minimum test time from the bottleneck TAM to another TAM, while keeping
Constraint 3 ��� � satisfied.

In step 5
H

CHECK-EMPTYWIRES, empty (redundant) wires are searched at all
TAMs under the condition that Constraint 2 ��� � , being the minimum width of the TAM,
is not violated. If empty wires are found, they are assigned iteratively to the TAM with
the maximum test time such that the overall test time is minimized and Constraint 2 �����
is not violated.

Finally, in step 6
H
, REORDER, the ordering of cores within a TAM is handled. First,

the user-specified cores ordering constraints are satisfied. In a second step, other cores
in the TAMs are sorted accordingly to minimize TAM wire length [GM03c]. The test
architecture obtained after this step, satisfies all user-constraints specified in the input
TAS file.
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6.5 Experimental Results

This section presents experimental results obtained with the new user-constrained ver-
sion of TR-ARCHITECT. For the experiments, SOCs from the ITC’02 SOC Test Bench-
marks [MIC] were used. First, the operation of the new user-constrained version of
TR-ARCHITECT for SOC p22810 with � ����� � � �

is illustrated by means of an ex-
ample case. For the user constraints, the TAS file as shown in Figure 6.1 is used. The
example TAS file contains three user-specified TAMs with minimum width equal to

�
,�

, and
�

respectively. The total number of TAMs in the architecture is limited to five.

For the first four steps, Figure 6.6 shows the resulting test schedules after every
step of TR-ARCHITECT. In these schedules, the horizontal axis displays test time (in
number of clock cycles), while the vertical axis displays the TAM width. The numbered
boxes depict the various core tests. The number in the box is the core identification
number; for very small boxes, this number is omitted. The cores which were specified
by the user to be assigned to certain TAMs are depicted as boxes of a slightly darker
color than the other cores. The three darkest shades of gray in the schedules represent
three types of idle bits 3.5.

Figure 6.6(a) shows the initial test schedule after Step 0
H
, CREATETASARCHITEC-

TURE. This schedule contains only the three user-specified TAMs and six cores. TAMs��� � , ��� � , and ��� � get assigned their minimum TAM widths, respectively
�
,
�
, and�

. In the shown schedule, out of
� �

given TAM wires, only
���

TAM wires are used.
Similarly, out of

��

cores in the SOC, only six cores are assigned. Therefore, the as-

signment of the remaining
� �

TAM wires and
� �

cores have to be carried out in the
remaining five steps.

Figure 6.6(b) shows the test schedule after Step 1
H
, CREATESTARTSOLUTION. In

this step, the remaining cores are assigned to one- or multiple-wire TAMs, depending
on their test-data volume and the number of available TAM wires. For this example,
TR-ARCHITECT created

� �
distinct TAMs, including the three user-specified TAMs.

Hence, the architecture violates Constraint 1 ����� , which allows for at most five TAMs.
The total test time of this schedule is

� � � � � ���
clock cycles, and is dominated by core 1.

There is a large imbalance in the completion time of the various TAMs.

The test schedule obtained after Step 2
H
+3
H
, OPTIMIZE-BOTTOM2TOP, is shown

in Figure 6.6(c). In order to satisfy Constraint 1 ����� , TR-ARCHITECT has reduced
the number of TAMs from

� �
down to five; three user-specified TAMs and two TAMs

created by the tool. The reduction of the number of TAMs was achieved for
� �

�
, meaning an individual merge was accepted in OPTIMIZE-BOTTOM2TOP even if

that merge resulted in a
���

increase in the SOC test time. However, despite the user
constraints, this optimization step yielded in an overall test time of

� � � � � 
 �
clock

cycles, which is a
� � �

reduction with respect to the previous step. After completing
Step 2

H
+3
H
, the only user constraint which can still be violated is Constraint 3 ��� � ,

being the maximum number of cores per TAM. In Figure 6.6(c), TAM ��� � of width
five is a user-specified TAM which contains 15 cores, while at most three cores are
allowed to be assigned to this TAM.
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Figure 6.6: Test schedule for SOC p22810 with � ����� � ���
after (a)

CREATETASARCHITECTURE, (b) CREATESTARTSOLUTION, (c) OPTIMIZE-
BOTTOM2TOP, and (d) RESHUFFLE steps of the user-constrained TR-
ARCHITECT.
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Step 4
H
, RESHUFFLE, resolves this violation and results in the test schedule shown

in Figure 6.6(d). The overall test time is
��� � � � � �

clock cycles, which is an increase of
� � � �

compared to the previous step. This is due to the fact that TR-ARCHITECT was
forced to move cores from TAM ��� � to other TAMs to satisfy Constraint 3 ��� � , despite
the associated test time increase. Step 5

H
, CHECK-EMPTYWIRES, did not result in

any test time improvement. Finally, Step 6
H

(REORDER) satisfies the cores-ordering
constraints in TAMs. The resulting test architecture and corresponding test schedule
now satisfies all user constraints. For this case, the original version of TR-ARCHITECT,
without user constraints, achieves a test time of

� � � � � � �
clock cycles (see Section 3.8

in Chapter 3). The test time cost of implementing this set of user constraints was
� � � � �

,
when compared to the original, unconstrained test time of

� � � � � ���
clock cycles.

Next, the relation between a user-specified maximum number of TAMs and the
SOC test time is investigated. In this experiment, for a given SOC and � ����� , first TR-
ARCHITECT is executed unconstrained, in order to get the ‘optimal’ number of TAMs.
Subsequently, TR-ARCHITECT is executed with user constraints, in which iteratively
only the user-specified maximum number of TAMs is specified and decreased by one.
Figure 6.7 shows these experimental results.
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Figure 6.7: Variation in SOC test time, computational time (CT), and
�

with the user-
specified maximum number of TAMs.

Figure 6.7(a) shows the SOC test time as a function of the user-specified maximum
number of TAMs for (1) SOC p22810 and � ����� � � �

, and (2) SOC p93791 and
� ����� � � �

. In both cases, the unconstrained run of TR-ARCHITECT yields seven
TAMs. Figure 6.7(a) shows that restricting the number of TAMs usually leads to an
increase in test time. However, due to the heuristic nature of the optimization algorithm,
in some cases decreasing the number of TAMs also decreases the overall test time. For
example, for SOC p93791, going from seven to six TAMs and three to two TAMs,
decrease the overall test time.

Figure 6.7(b) shows the variation in the value of
�

and computational time as func-
tion of the user-specified maximum number of TAMs. The value of

�
increases for a

decreasing maximum number of allowed TAMs. This was to be expected as a small
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number of TAMs means more iteration loops in OPTIMIZE-BOTTOM2TOP, in order to
merge more TAMs and to reduce the total number of TAMs further. The increase of�

leads to an increase of computational time. In general, one can state that more user
constraints lead to longer compute times of TR-ARCHITECT.

6.6 Summary

In this chapter, an approach to extend basic SOC test architecture design approaches
that minimize the overall SOC test time with the capabilities to include user constraints
is presented. To model user constraints in a concise and un-ambiguous way, a Test
Architecture Specification (TAS) language is defined. In a TAS file, a user can express
constraints with respect to (1) the number of TAMs, (2) the TAM widths, (3) the as-
signment of cores to TAMs, and (4) the core ordering with a TAM. A TAS file can serve
as an input to the test architecture design tool. With the help of this TAS format, a user
can now specify a partial or full test architecture specification to the test architecture
optimization algorithm.

A user-constrained version of TR-ARCHITECT that takes into account user con-
straints specified in the TAS language is presented. The new proposed TR-ARCHITECT
uses an approach of, six steps instead of the five-step approach used in the original
TR-ARCHITECT. The operation of the proposed TR-ARCHITECT is illustrated for
SOC p22810 taken from the ITC’02 SOC Test Benchmarks. Finally, for two bench-
mark SOCs, it was shown that increasingly strict user constraints typically lead to an
increase in both test time and computational time.



Chapter 7
Test Architecture Design
for SOCs with Hierarchical Cores

7.1 Introduction

Modern SOC designs are not limited to only one level of hierarchy (SOC and cores),
instead they consist of multiple levels of design hierarchy. For example, [DJR01,
GCM

�

04] describe SOCs for digital video, for which the design is partitioned into
design units called chiplets, which in turn consist of cores. In general, cores or design
units that contain other cores within them are referred to as hierarchical cores. Con-
trary to this, cores that do not contain other cores are referred to as flat cores. Based on
the hierarchical relation, a hierarchical core is also called a parent core, while the cores
which are at one-level below and embedded in this core, are referred to as child cores.
By definition, a child core itself can be a parent core for the cores at deeper levels of
hierarchy. An example of a hierarchical core is an older generation SOC embedded in a
current generation SOC. In the ITC’02 SOC TestBenchmarks suite [MIC], a large num-
ber of industrial SOCs have hierarchical cores with multiple levels of hierarchy. For
example, SOC p93791 [MIC] contains 32 cores, out of which eight are hierarchical
cores and contain embedded memory cores.

While designing test architectures for SOCs with hierarchical cores, wrappers for
hierarchical cores have to be designed such that the test-access is available to both
parent and child cores. Testing of a parent core requires access to its own elements
such as scan chains and wrapper cells as well as to the elements of its child cores.
For simplicity, most prior work on wrapper design as well as on test architecture de-
sign have assumed only one level of hierarchy (SOC and cores), i.e. even if there is
a hierarchy among the cores, all cores in an SOC are treated at the same level of hi-
erarchy. This includes the wrapper and test architecture design algorithms presented
in previous chapters. Due to this assumption, all these methods design wrappers for
both hierarchical and flat cores in the same fashion. For a parent core testing, all
these methods do not consider the time required to access to elements in its child

111
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cores. Furthermore, optimal test schedules proposed by these methods allow paral-
lel testing of parent and child cores, which is not supported by the existing wrapper
architectures [MAB

�

98,VB98,DZW
�

03]. Therefore, test solutions proposed by these
methods are not directly applicable to real-life SOCs and support for multiple levels of
hierarchy requires substantial modifications to these approaches.

In this chapter, the problems of wrapper design for hierarchical cores and test archi-
tecture design for SOCs with hierarchical cores are addressed. First, a generic hierar-
chical core model is presented, and four different practical design scenarios that occur
between two adjacent hierarchy levels are identified. Next, the testing requirements for
a hierarchical core are discussed and an improved wrapper architecture that allows for
parallel testing of parent and child cores is presented. The proposed wrapper archi-
tecture is compatible with the proposed IEEE P1500 wrapper architecture [DZW

�

03]
and the wrapper architecture presented in Chapter 2, and presents an extension to that.
The proposed wrapper architecture optimizes both core internal as well as external test
time. By using the proposed wrapper architecture, optimal test schedules obtained from
the existing test architecture design methods that consider SOCs with flat cores can be
implemented directly for the same SOCs with hierarchical cores. Hence, optimal test
times can be obtained for SOCs with hierarchical cores. Finally, experimental results
for the ITC’02 SOC Test Benchmarks [MIC02] are presented.

7.2 Prior Work

All wrapper architectures and wrapper design methods available in literature [DZW
�

03,
MAB

�

98, VB98, MGL00, Kor02], including the one which is presented in Chapter 2,
assume flattened hierarchy, i.e. flat cores. All wrapper architectures support three
mandatory modes. These modes are the normal functional mode, the Inward-facing
mode, and the Outward-facing mode. In the normal functional mode, the wrapper
is transparent and the core is in the functional operation mode. The Inward-facing
mode is used to test the circuitry inside the core. In the Outward-facing mode, the
circuitry outside the core is tested. Some wrapper architectures [DZW

�

03, MAB
�

98]
also support Bypass mode, which is used to bypass the entire core. Due to conflicting
requirements of wrapper cells in various modes, a wrapper can only be configured in
one of the modes at a time.

Most test architecture design algorithms described in literature [Cha00b, ICM01,
EI01, HCT

�

01, GM02c, HRC
�

02, KI02, GM03a, LF03, ZRPH03, GM04a, KGM
�

04]
assume flat cores, i.e. even if there is a hierarchy among the cores, all cores in an
SOC are treated at the same level of hierarchy. Therefore, to minimize SOC test
time, all the methods propose test schedules which allow for parallel testing of par-
ent and child cores which is not possible with the used wrapper architecture. Only
limited work has been carried out on test architecture design for SOCs with hierarchi-
cal cores [BCC

�

00,CBC00,BMM02]. While these paper have addressed the design of
hierarchical test architectures, they have not focused on optimizing wrappers and TAM
design for test time minimization and presenting results for industrial benchmarks. Re-
cently [ICKK03], test architecture optimization techniques for non-hierarchical SOCs
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have been used to optimize test architectures for SOCs with multiple levels of hierar-
chy. However, access to child cores elements for parent cores tests and the constraints
on parallel testing of parent and child cores have been neglected.

7.3 Hierarchical Core Model

Before going into the details with regard to testing of hierarchical cores, first a generic
hierarchical core model is presented in this section. Hierarchical cores can have multi-
ple levels of design hierarchy. They contain embedded cores, which in turn can contain
other embedded cores at deeper levels of hierarchy. Therefore, by definition, a hierar-
chical core model is a recursive model.

The design hierarchy present in a hierarchical core can be easily represented by
its design hierarchy tree. In a design hierarchy tree, nodes represent cores and an
edge between two nodes represents the hierarchical relation between the corresponding
cores. All leaf nodes in a design hierarchy tree represent non-hierarchical cores, while
the root node represents the top-level design entity (core or SOC). The depth of a node
represents the level of the corresponding core in the design hierarchy. A node (core) at
depth � in the design tree is called a parent node (core) with respect to the nodes (cores)
that are connected to it and are at depth � � � � � . Conversely, nodes at depth � � � � � are
called child nodes with respect to the node which is at depth � and connected to these
nodes. Parent nodes may have multiple-child nodes, which in turn can be parent nodes
for some-other nodes.

Core E

Core C

Core B Core D

Core F

Core H

Core G

Hierarchical Core A

Core B Core C

Core E

Core H

Core D

Core GCore F

Depth 0

Depth 1

Depth 2

Depth 3

Core A

(a) (b)

Figure 7.1: Example of a generic (a) hierarchical core, and its (b) design hierarchy tree.

Figure 7.1(a) shows an example of a generic hierarchical core � . The hierarchical
core shown in the figure contains three child cores

�
, � and � , out of which cores

�

and � are again hierarchical cores. Core
�

contains only one child core
�

, while core
� contains two child cores � and

�
. Core

�
itself contains a child core � . Therefore,

core
�

is a child core of core � but the parent core for core � . Figure 7.1(b) shows
the design hierarchy tree for core � . In Figure 7.1(b), at the top-level (depth

�
) is core

� itself, while core � is at the lowest-level (depth
�
) in the design hierarchy tree.

In case of hierarchical cores, there are three parameters that influence the problems
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of wrapper and test architecture design. These three parameters are scan chains, wrap-
per and TAM architecture. These parameters might be hard or soft in-terms of their
implementation. A hard implementation of a parameter is the one in which the param-
eter is fixed and cannot be changed. On the contrary, a soft implementation allows for
changes according to the requirements. In a test architecture, a TAM can be assigned
to a core, only after the core has been wrapped and a core can be wrapped only after
the scan chains have been designed. Therefore, a soft implementation of scan chains
cannot follow a hard implementation of a wrapper. Similarly, a soft implementation of
wrapper cannot follow a hard implementation of TAM architecture. Based on the hard
and soft implementation of scan chains, wrapper and TAM architecture, there are four
feasible design scenarios that can be identified for a parent or a child core [SGMC04].
These four design scenarios are as follows:

1. hard scan chains, hard wrapper, hard TAM architecture,

2. hard scan chains, hard wrapper, soft TAM architecture,

3. hard scan chains, soft wrapper, soft TAM architecture,

4. soft scan chains, soft wrapper, soft TAM architecture.

For example, consider a third-party hierarchical IP core which contains several
other embedded cores. To protect IP rights, all child cores in the hierarchical IP core
might already be wrapped and TAMed by the core provider. This corresponds to design
scenario

�
for all child cores. In addition, the hierarchical IP core might be wrapped

itself which corresponds to design scenario
�

for the parent core. Examples of design
scenarios

�
and

�
are in-house designed hierarchical cores, for which all three parame-

ters can be soft. In general, a hard implementation of the scan chains of a core, wrapper
and TAM architecture restricts the flexibility in test time minimization. On the other
hand, soft implementation of scan chains, wrappers and TAM architectures are more
suitable for optimization, since the design of the test architecture can be optimized
globally for test time. Therefore, design scenarios

�
and

�
are more likely to occur

in large design houses such as Philips. These design scenarios also correspond to the
SOC models considered in the test architecture problems in the previous chapters.

Based on the reasoning mentioned above, only design scenarios
�

and
�

are consid-
ered in this chapter and design scenarios having fixed wrappers and TAM architectures
are excluded from the discussion [SGMC04]. In this chapter, it is assumed that irre-
spective of the level in the design hierarchy, all cores in an SOC are not equipped with
wrappers and TAMs. Furthermore, all cores can have a hard or soft implementation of
the scan chains inside the cores, i.e. fixed-length scan chains or flexible-length scan
chains are allowed.

7.4 Testing of Hierarchical Cores

To understand the problem why traditional wrapper architectures and test architecture
design algorithms available in literature are not sufficient for SOCs with hierarchical
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cores, one needs to look at the testing requirements for hierarchical cores. Let us
consider the testing of a hierarchical core consisting of one parent and one child core
only. The parent core can be considered at any level � , while the child core can be
considered at level � � � � � . This allows the possibility for the parent core to be a child
core itself for some other core at level � � 
 � � . Since the hierarchical core model is
a recursive model, the presented analysis for two adjacent levels of hierarchy can be
easily extended to any number of levels and with any number of child cores.

Figure 7.2(a) shows an example of a hierarchical core consisting of one parent and
one child core. The parent core has two scan chains, two functional input terminals
Pa[0:1], and two functional output terminals Pz[0:1]. The child core also has
two scan chains, but three functional input terminals Ca[0:2] and two functional
output terminals Cz[0:2].

Pa[0:1]

Pz[0:1]

Scan chain

Scan chain

Ca[0:2]
Cz[0:1]

scan chain
scan chain

Child core

Parent core Pz[0:1]Pa[0:1]

Scan chain

Scan chain

Ca[0:2]
Cz[0:1]

scan chain
scan chain

Parent core

Child core

Child core wrapper

Parent core wrapper

PTAM

CTAM CTAM

PTAM

wrapper input cells wrapper output cells

(a) (b)

Figure 7.2: (a) Example of a hierarchical core, and (b) its wrapper.

Figure 7.2(b) shows the IEEE P1500 compliant wrapper architecture [DZW
�

03]
for this core. For clarity, the control circuitry, the bypass circuitry, and the connection
through the one-bit serial TAM are not shown. In the shown wrapper, the test-access
requirement for the parent core is served by a three-bit wide TAM called PTAM, while
the test-access requirement for the child core is served by a three-bit wide TAM called
CTAM. All functional terminals are connected to TAM wires via wrapper cells, while
the scan chains are directly connected to TAM wires. It is important to note that in
practice, the parent and child cores may share the same TAM. Furthermore, if con-
nected to different TAMs as shown in Figure 7.2(b), the width of PTAM and CTAM can
also be different. Now the testing of the child and parent cores are discussed below.

Child Core Test

To test a core, one needs to apply test stimuli and subsequently observe test responses.
To apply test data to the child core, test stimuli have to be loaded into its scan chains,
and the wrapper input cells that are connected to its functional input terminals marked
as Ca[0:2]. Similarly, to observe test data from the child core, test responses have
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to be unloaded from its scan chains, and the wrapper output cells that are connected to
its functional output terminals marked as Cz[0:1]. This requires the wrapper of the
child core to be configured in the Inward-facing mode. It is important to note here that
during the testing of a core, wrapper input cells are used to apply test data, while the
wrapper output cells are used to capture test responses.

Parent Core Test

Testing of the parent core is somewhat more complex. To apply test data to the parent
core, test stimuli have to be loaded into its scan chains, and the wrapper input cells that
are connected to its functional input terminals marked as Pa[0:1]. As the primary
output terminals (Cz[0:1]) of the child core acts as input terminals to the parent core,
test stimuli have to be loaded into the wrapper output cells that are connected to the
functional output terminals (Cz[0:1]) of its child core. Figure 7.3 shows this case. In
Figure 7.3, all elements, like scan chains and wrapper cells that take part in this phase
are enclosed in a dotted dark grey box.

Pz[0:1]Pa[0:1]

Scan chain

Scan chain

Ca[0:2]
Cz[0:1]

scan chain
scan chain

Parent core

Child core

Child core wrapper

Parent core wrapper

PTAM

CTAM CTAM

PTAM

Figure 7.3: Applying test data to the parent core.

To observe test data from the parent core, test responses have to be unloaded from
the parent core scan chains and the wrapper output cells connected to its functional
output terminals marked as Pz[0:1]. As the primary input terminals (Ca[0:1])
of the child core acts as output terminals from the parent core, test responses have to
be unloaded from the wrapper input cells connected to the functional input terminals
(Ca[0:2]) of its child core. Figure 7.4 shows this case. In Figure 7.4, all elements,
like scan chains and wrapper cells that take part in this phase are enclosed in a dotted
dark grey box.

It is clear from Figures 7.3 and 7.4 that testing of a parent core requires not only
access to its own elements such as scan chains and wrapper cells, but also to the el-
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Figure 7.4: Observing test data from the parent core.

ements of its child core(s). Furthermore, the wrapper input cells in the child-core
wrapper are used to capture test responses, while the wrapper output cells are used to
apply test data. Therefore, during the parent-core testing, the role of wrapper cells in
the child-core wrapper is reversed compared to their role during the child core test-
ing itself. Due to this, testing of a parent core requires its wrapper to be configured
in the Inward-facing mode and the wrapper(s) of its child core(s) to be configured in
the Outward-facing mode. As the TAM (PTAM) connected to the parent core is not
connected to the wrapper cells in the child core wrapper, while testing the parent core,
both TAMs PTAM and CTAM should be used to transport test data for the parent-core
test.

Current wrapper architectures [MAB
�

98, VB98, MGL00, DZW
�

03] only allow a
wrapper to be configured in one mode at a time. Therefore, due to conflicting mode
requirements for the child core wrapper, testing of a child core is not possible while the
parent core is being tested. Based on this analysis, one can conclude that for hierar-
chical cores with multiple-levels of design hierarchy, parallel testing cannot be carried
out for the cores that are hierarchically related and are at two adjacent levels in the de-
sign hierarchy. Furthermore, there is no restriction on parallel testing of a core and its
grand-child cores. For example, for the hierarchical core example shown in Figure 7.1,
testing of core � cannot be done in parallel with the testing of cores � and

�
, however

it can be done in parallel with the testing of core � .

All test architecture design methods available in literature assumes flat cores and
hence use the same wrapper architecture for both hierarchical and flat cores. To opti-
mize SOC test time, these methods propose test schedules that allow for parallel testing
of parent and child cores, which is not possible (as shown above) with the current wrap-
per architectures. Furthermore, for parent cores testing, these methods do not consider
the time required to access the elements in the child cores wrappers. Therefore, test
architectures and schedules proposed by these methods are not directly applicable to
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real-life SOCs. This justifies the statement that existing test architecture design meth-
ods are not optimally suited for SOCs with hierarchical cores.

To gain a better understanding, for example consider the test architecture of a hi-
erarchical SOC and the corresponding test schedule as shown in Figure 7.5. The SOC
shown in Figure7.5(a) contains four cores, out of which core � is a hierarchical core
and contains core

�
. The shown test architecture contains two TAMs of widths � �

and � � . The TAM with width � � connects to cores � and
�

, while the other TAM
connects to cores � and � .
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Figure 7.5: (a) Example of a test architecture for a hierarchical SOC, and (b) optimal
test schedule considering no hierarchy.

The corresponding test schedule shown in Figure 7.5(b) does not consider any hi-
erarchy among the cores, i.e. all cores are considered at the same hierarchical level.
In Figure 7.5(b), the horizontal axis represents the test time, while the vertical axis
represents the TAM width. In the case shown, the TAM containing cores � and �
determines the SOC test time. Please note that for each core, the test time shown in the
figure is the time required to test the circuitry inside the core, i.e. the wrapper of the
core is configured in the Inward-facing mode only.

It is clear from Figure 7.5(b) that if all cores are considered at the same level, quite a
good test completion time can be obtained for this SOC. Unfortunately, in reality there
is a hierarchy between core � and core

�
, as core � is a parent core for core

�
. Due

to this, cores � and
�

cannot be tested in parallel. Therefore, the test schedule shown
in Figure 7.5(b) is not valid anymore and changes are required in order to respect the
hierarchy present in the SOC.

A trivial solution to this problem is to modify the given test schedule in such a way
that only one of the two (parent and child) cores is tested at a time. Unfortunately,
this can lead to serialization of various tests and hence can severely affect the SOC
test time. For example, Figure 7.6(b) shows the modified test schedule considering the
hierarchy present in the SOC. In Figure 7.6(b), while testing core � , its child core is
put into Outward-facing mode. It can be seen from Figure 7.6 that the modified test
schedule results in a large penalty (

� �
%) in test time.

In terms of minimum SOC test time, the best solution to this problem would be to
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Figure 7.6: (a) Original test schedule considering no hierarchy, and (b) modified test
schedule considering hierarchy among cores � and

�
.

modify the wrapper architecture such that parallel testing of parent and child cores is
possible. By doing so, a test architecture design algorithm will have the full flexibility
in terms of arranging tests of various cores, and optimal test times could be obtained
for hierarchical SOCs as well. In the next section, an improved wrapper architecture is
presented that allows for parallel testing of the parent and child cores.

7.5 Improved Wrapper Architecture

To allow the testing of the parent and child cores in parallel, it is proposed to change
the wrapper cells in the child core wrapper [Goe04]. Unlike the conventional wrapper
cell which is connected to only one TAM, the proposed wrapper cell is connected to
the following two TAMs:

1. child-core TAM, to serve the test-data requirements for the child core,

2. parent-core TAM, to serve the test-data requirements for the parent core.

FOFI

TO

TI

FOFI

PTO

CTI PTI

CTO

(a) Conventional wrapper cell (b) Proposed wrapper cell

Figure 7.7: Conceptual views of wrapper cells.

Figure 7.7(a) shows a conceptual view of the conventional wrapper cell, while
Figure 7.7(b) shows a conceptual view of the newly proposed wrapper cell. In Fig-
ure 7.7(a), signals FI and TI represent the primary (functional) and test (TAM) inputs
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to the wrapper cell respectively. Similarly, signals FO and TO represent the primary
(functional) and test (TAM) outputs from the wrapper cell. In Figure 7.7(b), signals
CTI and CTO represent the test input and output corresponding to the child-core TAM,
while signals PTI and PTO represents the same for the parent-core TAM.

Figure 7.8(a) shows an example implementation for the conventional wrapper input
cell. In this cell, flip-flop FF1 is used to store test date for the core-under-test (in this
case the child core). Figure 7.8(b) shows an example implementation of the proposed
wrapper input cell. In this cell, there are two flip-flops; flip-flop FF1 is again used to
store test data for the child core test, while the newly added flip-flop FF 2 is used to
store test data for the parent-core test. In both the cells, terminal FI is connected to the
primary signal coming from the parent core. Similarly, terminal FO is connected to the
primary signal going to the child core.
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Figure 7.8: Example implementations for the wrapper input cell.

Figure 7.9 shows the proposed wrapper input cell configured in various modes.
The thick black line in the figure shows the active path in the corresponding mode. The
Inward-facing mode is used to test the child core itself, while the Outward-facing mode
is used during the parent-core test.
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Figure 7.9: Configuration of the proposed wrapper input cell in various modes situa-
tions.
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Figure 7.9(a) shows the Inward-facing mode during shift operation. In this mode,
the wrapper cell is configured such that test data can be shifted in/out from flip-flop FF1
via the terminals CTI and CTO. Figure 7.9(b) shows the Inward-facing mode during
the normal step. In this step, the data stored in flip-flop FF1 is applied to terminal FO.
Similarly, Figures 7.9(c) and (d) show the same sequence but now for the Outward-
facing mode. During the shift operation in this mode, the wrapper cell is configured
such that test data can be shifted in/out from flip-flop FF 2 via the terminals PTI and
PTO. During the normal step, test response available at terminal FI is captured in flip-
flop FF2.

Figures 7.10(a) and (b) show example implementations for the conventional and the
proposed wrapper output cells respectively. In practice, the conventional wrapper input
cell can also be used as the wrapper output cell, except that in the wrapper output cell,
terminal FI is connected to the primary signal coming from the child core. Similarly,
terminal FO is connected to the primary signal going to the parent core.
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Figure 7.10: Example implementations for the wrapper output cell.

Figure 7.11 shows the proposed wrapper output cell configured in various modes.
Figure 7.11(a) shows the Inward-facing mode during shift operation. In this mode, the
wrapper cell is configured such that test data can be shifted in/out from flip-flop FF 1
via the terminals CTI and CTO.

Figure 7.11(b) shows the Inward-facing mode during the normal step. In this step,
test response available at terminal FI is captured in flip-flop FF 1. Similarly, Fig-
ures 7.11(c) and (d) show the same sequence but now for the Outward-facing mode.
During the shift operation in this mode, the wrapper cell is configured such that test
data can be shifted in/out from flip-flop FF 2 via the terminals PTI and PTO. During
the normal step, test stimuli stored in flip-flop FF2 is applied at the terminal FO.

Table 7.1 shows the required multiplexers settings for both the proposed wrapper
input and output cells in the various supported modes. In the table, the symbol ‘X’
represents the don’t care term. From the table, one can see that the settings for the
Inward-facing mode and the Outward-facing mode are compatible with each other.
Hence, with this type of wrapper cell, a core can be configured in both the Inward-
facing and Outward-facing modes at the same time. Therefore, testing of the parent
and child cores can be done in parallel, if they are connected to different TAMs.
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Figure 7.11: Configuration of the proposed wrapper output cell in various modes situ-
ations.

Table 7.1: Multiplexer settings in the proposed wrapper cells for various modes.

Required multiplexer settings
Wrapper mode Wrapper input cell Wrapper output cell

m1 m2 m3 m4 m5 m6
Functional X 1 X X 1 X
Inward-facing shift 1 X X 1 X X
Inward-facing normal 0 0 X 0 X X
Outward-facing shift X X 0 X X 0
Outward-facing normal X X 1 X 0 X

7.5.1 Testability of the Proposed Wrapper Cells

The proposed wrapper input cell is fully testable as all nodes in the cell are fully con-
trollable and observable. In contrast, the wrapper output cell is not fully testable. This
is due to the fact that unless connected directly to the chip pin, the value at the out-
put signal of the multiplexer m5 cannot be observed during any test mode. In order to
make the proposed wrapper output cell fully testable, an additional multiplexer has be
be added.

Figure 7.12 shows an example of the fully testable wrapper output cell. To ob-
serve the value at the output signal of the multiplexer m5, the bottom input signal of
multiplexer mx need to be selected. Therefore, by setting the control signal of the mul-
tiplexer mx to logic value ‘0’ in the normal operation during the Outward-facing mode,
the value at the output signal of multiplexer m5 can be captured in flip-flop FF 2 and
subsequently shifted-out during the shift operation. For the rest of the modes, setting
of multiplexer mx is not important and can hence be considered as don’t care (‘X’).
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Figure 7.12: Example implementation for the fully testable wrapper output cell.

7.5.2 Ordering of Elements in a TAM

In the proposed wrapper cells for the child core, the parent TAM also connects to wrap-
per cells in the child core wrapper. Therefore, in the improved wrapper architecture that
uses the proposed wrapper cells in the child core wrapper, the parent TAM is connected
to the following elements:

� scan chains in the parent core

� wrapper input cells connected to the parent core functional input terminals

� wrapper output cells connected to the parent core functional output terminals

� wrapper input cells connected to the child core functional input terminals

� wrapper output cells connected to the child core functional output terminals.

To minimize the test time for the parent core, an optimal ordering for the above-
mentioned elements in a TAM connected to the parent core is presented here. As
described earlier, in order to test the parent core one needs to shift test stimuli into its
scan chains, its wrapper input cells and also to the wrapper output cells of its child
core. Similarly, one needs to shift-out test responses from its scan chains, its wrapper
output cells and also from the wrapper input cells of its child core. Figure 7.13 shows
the proposed optimal ordering of the various elements in a single TAM wire that is
connected to the parent core.
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child input cells 
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Figure 7.13: Ordering of various elements in a TAM connected to the parent core.

In Figure 7.13, boxes containing ids
* � 	 and

*
�
�

represent parent wrapper input
and output cells respectively. Similarly, boxes containing ids � � 	 and � �

�
represent
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child wrapper input and output cells respectively. As the scan chains take part both
in applying and observing test data, they are in the middle of the wrapper cells. The
wrapper input cells for the parent core together with the wrapper output cells for the
child core are connected in front of the scan chains. Likewise, the wrapper input cells
for the child core and the wrapper output cells for the parent core are connected after
the scan chains.

Based on the above described ordering, Figure 7.14 shows the improved wrapper
architecture for the hierarchical core using the proposed wrapper cells.
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Figure 7.14: Improved wrapper architecture configurations for parent and child
core tests
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Figure 7.14(a) shows the improved wrapper configured in the parent Inward-facing
and child Outward-facing modes. Figure 7.14(b) shows the improved wrapper architec-
ture configured in the child Inward-facing mode. In both the figures, active connections
are shown by thick black lines, while the inactive connections are shown by grey lines.

As far as the impact of new wrapper cell on the functional performance of the
core is concerned, there will not be any difference as compared to the conventional
wrapper cell. This is due to the fact that in the new wrapper cell also, there is only one
multiplexer in the functional path from FI to FO. The only drawback of the proposed
wrapper cell is the area overhead. Compared to the conventional wrapper cell, which
only requires one flip-flop, the new wrapper cell requires two flip-flops.

7.6 Experimental Results

In this section, experimental results are presented for four SOCs taken from the ITC’02
SOC Test Benchmarks [MIC02]. These four SOCs are p22810, p34392, p93791, and
a586710. These four SOCs were selected, as they are the only ones which contain mul-
tiple levels of design hierarchy. As the proposed wrapper architecture allows parallel
testing of hierarchical cores, the cores inside an SOC and the SOC itself (top-level test)
can also be tested in parallel. Unfortunately, not all SOCs have their top-level test listed
in the ITC’02 SOC Test Benchmarks [MIC02]. Therefore, only the core-internal tests
for all cores in the SOCs are considered. As all the SOCs in the benchmark set have
a fixed number of scan chains and lengths, only the test time results considering hard
scan chains, soft wrapper and soft TAM architecture (design scenario 3) are presented.
Furthermore, only the test time results for hybrid test-bus architectures are presented;
however similar results could be obtained for hybrid TestRail architectures also.

In the experiments, basic version of TR-ARCHITECT (described in Chapter 3) was
used for the test architecture design. However, the proposed wrapper architecture is
not limited to this design method only and other test architecture design algorithms
available in literature can be used instead. Here, the test time results for three cases
will be compared. In the first two cases, the conventional wrapper cells [MKL

�

02,
DZW

�

03] are used in the wrappers of all cores. In the third case, the proposed wrapper
cells are used in the wrappers of all child cores.

Case 1 is the original test architecture design as presented in Chapter 3. In this case,
all cores in an SOC are considered at the same level of design hierarchy. Therefore, in
all SOCs, all cores are considered to be flat. It is important to note that in Case 1, since
no hierarchy is assumed, testing of a core requires access to its own scan chains and
wrapper cells only.

In Case 2, it is assumed that the test architecture for the SOC has been already
designed as in Case 1 and it is only allowed to modify the test schedules in order to
respect the hierarchy present in the SOC. In this case, the wrapper of a child core is
configured in the Outward-facing mode during the test of its parent core. Testing of a
hierarchical core not only requires access to its own scan chains and wrapper cells, but
also to the wrapper cells of its child cores.
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In Case 3, the design hierarchy present in the SOC is considered from the very
beginning. In this case, the proposed wrapper cells are used in the wrappers of all
child cores. As the proposed wrapper cells allow for the testing of hierarchical cores
in parallel, neither the test architecture design algorithm nor the test schedule obtained
from the algorithm needs to be modified. However, for test time calculation of a parent
core, one needs to consider the access to elements of both the parent core as well as of
its child cores.

Table 7.2 shows the test time results (in terms of the number of clock cycles) for the
three above mentioned cases. The first two columns in Table 7.2 show the SOC name
and the number of TAM wires � ��� � available for the SOC test architecture design.
Column 3 shows the test time results for Case 1, i.e. considering flat cores. Column 4
shows the test time results for Case 2, in which the test schedules obtained from Case
1 are modified to respect the design hierarchy. Column 5 (

� @
) shows the percentage

(%) difference between the test times for Case 1 and Case 2.

Table 7.2: Experimental results for the test times of the three mentioned cases.

Using Conventional Wrapper Cells Using Proposed Wrapper cells
SOC � ����� Flat cores Hierarchical Cores Hierarchical Cores

(Case 1) (Case 2) (Case 3)
�

[GM02c]
� ��������� � �����	�
�

#NWC
p22810 16 457433 621895 36 466667 2 600

24 302737 547039 81 309641 2 600
32 222471 493290 122 229899 3 600
40 190995 460885 141 191978 1 600
48 157851 279949 77 157226 0 600
56 145417 315469 117 145417 0 548
64 133405 296445 122 133405 0 600

p34392 16 1010821 2327127 130 1019766 1 624
24 663193 1977631 198 702852 6 336
32 584524 1449581 148 584524 0 624
40 544579 643939 18 544579 0 301
48 544579 855644 57 544579 0 388
56 544579 855644 57 544579 0 388
64 544579 855644 57 544579 0 388

p93791 16 1791638 3363819 88 1792354 0 886
24 1185434 3438009 190 1211510 2 2157
32 912158 1504806 65 917246 1 2007
40 718005 4021279 460 730713 2 1875
48 601450 1965642 227 610037 1 2127
56 528925 1059869 100 528407 0 2270
64 455738 1908099 319 458600 1 2127

a586710 16 41523868 60294453 45 41523868 0 1678
24 28716501 53295859 86 28716501 0 1678
32 22475033 40729137 81 22475033 0 1678
40 19048835 36478145 91 19048835 0 1678
48 15315467 21723090 42 15212440 -1 1678
56 13401034 13401034 0 13401034 0 1148
64 12700205 12769440 1 12510356 -1 1148

Columns 6, 7, and 8 show the results for Case 3. Column 6 shows the test time ob-
tained using the new wrapper cells and considering the hierarchy present in the SOCs.
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Column 7 shows the percentage (%) difference between the test times for Case 1 and
this case (Case 3). Column 8 shows the required number of new wrapper cells (NWC).
As a new wrapper cell requires two flip-flops instead of the one used in the conventional
wrapper cell, this number can also be seen as the amount of area-overhead (excluding
area for multiplexers and wires) resulting from using the new proposed wrapper cells.

From the table, one can see that compared to the test times obtained considering flat
cores (Case 1), if the design hierarchy present in the SOCs is considered and only the
conventional wrapper cells are used (Case 2), an average increase of 113% (based on all
cases shown in the table) in test time is obtained. For SOC p93791 with � ��� � � � �

, the
penalty in test time is even more than 400%, which is not acceptable. As this increase
is due to the design hierarchy, a design house will not appreciate a hierarchical-test
development, no matter what benefits it may provide. Because sometimes, the design
hierarchy cannot be overruled, one needs to find a good test solution.

Test time results for Case 3 show that with the use of the proposed wrapper cells,
test times considering the design hierarchy can be comparable or better than the same
design without hierarchy. From Column 7, one can see that for most cases, Case 3
obtained the same test times as for Case 1 (SOCs with flat cores). Surprisingly, for
some cases the test times for Case 3 are even lower than that of Case 1. This is due
to heuristic nature of TR-ARCHITECT. For SOC p93791 with � ����� � � �

, by using
1875 new wrapper cells, one can decrease the penalty in test time from 460% (Case
2) to 2%. Figure 7.15 shows the design hierarchy present in SOC p93791. This SOC
contains

� �
cores, out of which eight are hierarchical cores. All hierarchical cores in

this SOC contain embedded memory cores.
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Figure 7.15: Conceptual view of the design hierarchy in SOC p93791.

For SOC p93791 with � ����� � � �
, Figure 7.16 shows the test schedules obtained

for all three cases. In Figure 7.16, the horizontal axis represents the test time (in the
number of clock cycles), while the vertical axis represents the TAM width. The rect-
angle boxes represent the tests of various cores and the number inside a box represents
the core ID. For very small boxes, this number is omitted. At the end of each TAM,
the shown number represents the test time for the TAM. Please note that the schedules
shown are not drawn to scale and idle time is shown at the end of a TAM only.
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Figure 7.16: Test schedules for the three cases for SOC p93791 with � ��� � � � �
.

Figure 7.16(a) shows quite a good schedule if hierarchy is not considered. The
reality comes into the picture with the test schedule shown in Figure 7.16(b). The dark
grey boxes show the tests for the child cores with their wrappers in the Outward-facing
mode for the parent core ID shown in the box. From this figure, one can see that TAM
5 contains a large number of child cores. Therefore, during testing of a parent core
in other TAMs, corresponding child cores in this TAM are configured in the Outward-
facing mode. Due to this, this TAM requires a large amount of time and determines the
overall test time.

With the help of the new wrapper cells, the test schedule as shown in Figure 7.16(c)
obtains the test time which is very close to the test time of the schedule shown in Fig-
ure 7.16(a). Please note that in Case 3, TR-ARCHITECT results in a new TAM assign-
ment. This is due to the fact that during optimization itself, TR-ARCHITECT considers
access to elements of both the parent and child cores for the test time calculation for
parent cores. Therefore, due to its heuristic nature, TR-ARCHITECT provides a new
TAM assignment. However, for the same TAM assignment as in Case 1, the use of new
wrapper cells results in an overall test time of 738175 clock cycles, which shows an
increase of

� � �
% in test time.

7.7 Summary

Modern SOCs are designed by using IP cores which are usually delivered by several
companies. Often, in-house designed cores contain one or more IP cores. Therefore,
modern SOC designs are not limited to only one level of hierarchy (SOC and cores),
instead they consist of multiple levels of hierarchy.
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In this chapter, a generic hierarchical core model has been presented and various
design scenarios that may exist in practice have been identified. Next, an improved
wrapper architecture for hierarchical cores was presented. The improved wrapper ar-
chitecture uses new types of wrapper cells in the wrapper of a child core. The use of
new wrapper cells allows for parallel testing of parent and child cores provided they are
connected to different TAMs. Therefore, all optimal test architecture design methods
available in literature which assume only one level of hierarchy (SOC and cores) and
proposes parallel testing of parent and child cores, can also be used without any modi-
fication for SOCs with multiple levels of hierarchy. The proposed wrapper architecture
is compatible with the IEEE P1500 wrapper architecture and is actually an extension
to it.

Experimental results for four SOCs taken from the ITC’02 SOC Test Benchmarks
have been presented. It is shown that due to the multiple levels of design hierarchy
present in the SOCs, optimal test schedules obtained using the conventional wrapper
cells result in a test time penalty up to 400% when compared to the same for SOCs
with only one level of hierarchy. It has been shown that by using the proposed wrapper
architecture for SOCs with multiple levels of hierarchy, test schedules comparable or
better than the test schedules for the same SOCs with one level of hierarchy can be ob-
tained. The new wrapper cells do not have any impact on the functional performance of
the core; however, they require extra silicon area. There is always a trade-off between
test time and area-overhead. In this chapter, we have given higher preference to test
time. The savings obtained in test times using the proposed wrapper cells justifies the
small increment in the silicon area.





Chapter 8
Conclusions

Modern semiconductor design methods and manufacturing technologies enable the cre-
ation of a complete system on a one single die, the so called System-On-Chip or SOC.
To reduce time-to-market for large SOCs, reuse of pre-designed and pre-verified blocks
called cores is employed. This leads to a new core-based design paradigm. Like the
design style, testing of SOCs can be best approached in a core-based fashion. In order
to enable core-based test development, an embedded core should be isolated from its
surrounding circuitry and electrical test access from chip pins to the core should be
provided. Isolation of a core is done by designing a wrapper around the core, while
the test access to the core is provided by means of a dedicated Test Access Mechanism
(TAM).

One of the challenges while developing a core-based test solution for an SOC is to
design the on-chip test architecture consisting of wrappers and TAMs in such a way,
that it enables effective scheduling of the various core tests, and fits the total amount
of test data onto the given ATE vector memory. The computational-time complexity
of designing a test architecture increases exponentially with the number of cores and
test pins. Therefore, for large real-life SOCs, there is a need for a tool which can
efficiently search the solution space of feasible architectures and yield a (near-)optimal
test architecture.

The objective of the work described in this thesis was to develop an automated
tool that can assist SOC designers in selecting cost-effective test architectures and test
schedules for their embedded-core based system chips. Therefore, in this thesis, the
problem of effective and efficient test architecture design for core-based SOCs has
been discussed. To design a test architecture for a SOC with a given number of cores
and a given number of test pins, the SOC designer has to determine the following items:

1. the number of individual TAMs and their widths,

2. the assignment of cores to TAMs, and

3. a wrapper design for each core.

131
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These parameters need to be selected in such a way that the total number of pins used
for the architecture design does not exceed the given number of test pins, while the
overall test cost is minimized.

In this thesis, the problem of wrapper design for a core with a given TAM width
is tackled first. A wrapper is a thin shell around a core and provides both functional
and test access to the core. A new wrapper architecture that unites the feature of the
TestShell of Philips and the IEEE P1500 wrapper has been proposed in Chapter 2. In
the proposed wrapper architecture, functional terminals of the core are connected to the
TAM wires via wrapper cells, while the core-internal scan chains are directly connected
to the TAM wires. The interconnection of wrapper cells and core-internal scan chains
determine the test time of the core. Therefore, to design a wrapper around a core, one
needs to partition the total number of scan chains and the wrapper cells over the given
TAM wires in a balanced way.

In case of soft cores for which the scan insertion is yet to be carried out, the problem
of wrapper design is very trivial and can be solved optimally. It is a result of the fact
that for soft cores, the number and length of the core-internal scan chains can still be
changed while creating the wrapper design. Hence, the total number of scan flip-flops
and wrapper cells can be distributed optimally over the TAM wires. For hard cores, it is
shown that the partitioning of scan chains and wrapper cells over TAM wires such that
the test time is minimized, is equivalent to the

���
-hard problem of Multi-Processor

Scheduling (MPS). In Section 2.5, various heuristic algorithms are described to solve
the problem of wrapper design for hard cores. Experimental results for a set of cores
with a range of TAM widths show that the heuristic COMBINE in combination with FFD
on an average performs better than others. Therefore, for core test-wrapper design this
heuristic is recommended and used in the later parts of the thesis.

Once a wrapper architecture and its design procedure is selected, the next step in
designing a test architecture is to calculate the total number of TAMs, their widths and
the assignment of cores to TAMs. This step is addressed in Chapter 3. As the test
architecture design problem is

���
-hard, a lower bound on the SOC test time is very

useful to measure the performance of any test architecture design algorithm. Based
on the amount of test data that needs to be transported into and out of the SOC and
the total available TAM width, an improved architecture-independent lower bound on
the overall SOC test time is derived in Section 3.4. For SOCs with hard cores, the
presented lower bound is more tight than the previously known lower bound; the new
lower bound is almost always an improvement for SOCs with soft cores. In order to
analyze why a lower bound cannot be achieved in practice, a classification of three
types of idle bits that occur in practical schedules, is presented.

For test architecture design, a novel five-step heuristic algorithm TR-ARCHITECT
is presented in Section 3.6. TR-ARCHITECT designs and optimizes test architectures
with respect to the required ATE vector-memory depth and test-application time. TR-
ARCHITECT optimizes wrapper and TAM design in conjunction. The first step of TR-
ARCHITECT is CREATESTARTSOLUTION and its main purpose is to create an initial
test architecture which will be further optimized by the steps to follow. In the next two
steps, i.e. OPTIMIZE-BOTTOMUP and OPTIMIZE-TOPDOWN, it is tried to merge the
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cores of two TAMs into a new TAM, such that the new TAM requires less wires; the
wires that are freed-up in the process can be utilized for an overall test time reduction.
In the step OPTIMIZE-BOTTOMUP, the TAM with the shortest test time is merged with
another TAM, while in the step OPTIMIZE-BOTTOMUP, the TAM with the largest test
time is merged with another TAM. The fourth step is RESHUFFLE. In this step, fine
tuning of the test architecture is carried out by moving individual cores from the TAM
with the maximum test time to other TAMs, provided that this reduces the overall
test time. The last and fifth step is CHECK-EMPTYWIRES, in which the number of
redundant wires (empty wires) are searched for all TAMs. If any empty wire is found,
then it is tried to assign it to the TAM with the maximum test time in order to minimize
the overall test time.

It has been shown that TR-ARCHITECT handles SOCs with hard and soft cores,
works for test bus as well as TestRail TAMs, and supports both serial and parallel
scheduling. Experimental results for the ITC’02 SOC Test Benchmarks shows that
compared to the manual best-effort engineering approaches used within Philips, TR-
ARCHITECT can save upto 75% in test time at negligible computational time. For all
SOCs and for all TAM widths, the run time for TR-ARCHITECT was around one sec-
ond. These large savings in test time at negligible computational time also emphasize
the need for an automated optimization approach for designing SOC test architectures.
Experimental results also show that TR-ARCHITECT test time results are comparable
or better than the four other previously published approaches.

The original version of TR-ARCHITECT as presented in Chapter 3, has been step-
wise extended to include the following practical constraints related to real-life SOC
designs.

� To minimize the total wire length required for routing the TAM wires in the de-
signed test architecture, layout-constraints have been included in TR-ARCHITECT
in Chapter 4. To calculate the total wire length for a test architecture, a simple
yet effective wire-length cost model has been presented. The wire-length cost
model assumes that the layout positions of all cores in the SOC are given. The
wire length of a TAM depends on the ordering of the cores connected to the
TAM. Therefore, to minimize the wire length of a TAM, an optimal ordering of
cores connected to the TAM has to be found. The problem of determining an
optimal ordering of cores with respect to the wire length of the TAM has been
shown equivalent to the well-known Traveling Salesman Problem (TSP) and a
simple heuristic algorithm has been described to solve it.

It has been shown that for a test architecture, minimization of test time and wire
length should be done in conjunction. As minimization of these two costs can be
conflicting, a weight-based cost function has been used in the layout-driven TR-
ARCHITECT. The new layout-driven TR-ARCHITECT minimizes the total wire
length by assigning neighboring cores as much as possible to the same TAM.
Experimental results for several benchmark SOCs show that the layout-driven
TR-ARCHITECT can save upto 85% in TAM wire length at an expense of less
than 5% in test time.
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� In Chapter 5, TR-ARCHITECT is extended to take the test control required for the
test architecture into account. The term test control refers to setting appropriate
test modes in the wrappers of all cores and the execution of cores tests. It has
been shown that based on the nature of test-control signals, the test control can
be divided into two categories: (1) pseudo-static test control, and (2) dynamic
test control. Test-control signals can be generated in different ways and each
of them provides a trade-off between the test time and area-overhead. Pseudo-
static test control refers to setting test modes in cores wrappers between various
test sessions. As these signals do not change very often, a shift-register based
generation of signals is preferred for them. To account for the time required for
test mode re-load, two test strategies have been presented.

Dynamic test control refers to controlling the execution of cores tests, i.e. scan-
enable control. As scan-enable signals change very often and the change-over
time for them is very small, they should be provided by means of dedicated chip
pins. In order to minimize the impact of scan-enable signals on the overall test
time, a SOC test architecture design procedure should take into account the pins
required for scan-enable signals. TR-ARCHITECT has been extended to take into
account both test mode re-load time and the pins required for scan-enable signals.
Experimental results for several benchmark SOCs show that the extended TR-
ARCHITECT can save upto 40% in test time if compared to the results obtained
from the original TR-ARCHITECT followed by the same test control settings.

� To include a wide range of user constraints which might be application- or
design-specific and hence hard to generalize into general cost functions, a novel
Test Architecture Specification (TAS) language has been described in Chapter 6.
In a TAS file, a user can fully or partially specify test architecture parameters.
TR-ARCHITECT has been extended to take into account the user constraints
specified in an input TAS file. All parameters specified by the user are con-
sidered as constraints, while everything which is not specified, is left for the tool
to optimize for minimal test time, TAM wire length, etc. This extension yields
a whole spectrum of use scenarios for TR-ARCHITECT. The spectrum ranges
from an empty user specification (in which the tool fully optimizes the resulting
test architecture) to a full user specification (in which the tool only computes the
corresponding test schedule and associated costs) and everything in between.

� Support for designing optimal test architectures for SOCs with hierarchical cores
has been presented in Chapter 7. Most of the test architecture design algorithms
(including TR-ARCHITECT) assume no hierarchy inside cores, i.e. even if there
is a hierarchy among cores, all cores in a SOC are considered at the same level.
To minimize SOC test time, all these methods allow parallel testing of cores
which are hierarchically related (parent and child relation). However, this is not
supported by the existing wrapper architectures. Therefore, test schedules ob-
tained by these methods are not directly applicable to SOCs with hierarchical
cores and therefore require modifications. To allow parallel testing and hence
reuse of existing design algorithms, a new wrapper architecture for hierarchical
cores has been presented. The presented wrapper architecture allows parallel
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testing of cores which are hierarchically related. Therefore, optimal test sched-
ules can be obtained for SOCs with hierarchical cores also. Experimental results
for several benchmark SOCs show that if the design hierarchy present in the
SOC is considered, the use of new wrapper architecture can save upto 400% in
test time if compared to modified schedules with conventional wrapper architec-
tures.

The work described in this thesis has lead to the creation of a Philips internal tool
called TR-ARCHITECT. The first practical use of TR-ARCHITECT has been reported
for the Philips PNX8550 SOC. The SOC PNX8550 contains more than 60 cores and
has 280 test pins. TR-ARCHITECT was only available halfway the design trajectory of
the PNX8550 SOC. Despite of that it helped to optimize the test architecture further
within the given constraints and designers successfully managed to fit the test data onto
the target ATE. Experimental results show that, if TR-ARCHITECT would have been
available from the project start onwards, further test time reductions up to 50% would
have been possible.

For future work, constraints like total power consumption during test, multiple
clock domains, precedence between various cores tests (For example, tests of core
� should be carried out before tests of core

�
), can be included in TR-ARCHITECT.
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Appendix A
List of Parameters

Here a list of all relevant parameters used in this thesis is presented.

��������� : maximum number of TAM wires available for test architecture design

�	� : set of cores in an SOC

� For every core 
�� �
– 
�� : total number of functional input terminals

– ��� : total number of functional output terminals

– � � : total number of functional bi-directional terminals

– � � : total number of test patterns

– � : set of scan chains

– ��������� : length of scan chain � 	 � �
– � � : total number of scan chains

– � ���! : length of the � �#" scan chain

– $ � : total number of scan flip flops

– � ������ : length of the longest TAM chain in the core wrapper

– �%
�� : maximum scan-in time

– �&��� : maximum scan-out time

– '��&� : total number of test stimuli bits per test pattern

– ')(*� : total number of test response bits per test pattern

– '�� : total test time

– �,+.-0/ (c): length of the WIR in the wrapper of the core

�21 : total test time for the SOC
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��� : set of TAMs in a test architecture

� For every TAM ( � �
– ( : set of cores that are connected to the TAM

– � � ( � : width of the TAM

– ' � (�� : total test time for the TAM

– �,+.-0/ (r): added length of all WIRs in the wrappers of the cores connected
to the TAM

� � : total number of chip pins available for test

� � � : total number of chip pins required for test control

�
�����

: length of the instruction register in the boundary-scan architecture.



Appendix B
Computational Complexity

B.1 Introduction

Computational complexity analysis [Pap94] deals with the calculation of the resources
required during computation to solve a given problem. The most common resources
are time (how many steps does it take to solve a problem) and space (how much mem-
ory does it take to solve a problem). Complexity analysis differs from computability
analysis [GJ79], which deals with whether a problem can be solved at all, regardless of
the resources required.

The computational-time complexity of an algorithm is the number of steps that it
takes to solve an instance of the problem, as a function of the size of the input. To
avoid any implementation dependency, Big O notation is used. If for a problem of size
� , an algorithm has a complexity of � ��� � �
��� on one machine, then it will also have
complexity of � ��� � �
� � on most other machines.

Suppose � � �
� and � � �
� are two functions defined on some subset of real numbers,
then the function � � �
� is � ��� � �
� � if and only if

� increase of � � �
� is not faster than that of � � �
� or

� � � 	 ��� � � � �
����� � �
� exits and finite or

� there exists a number � � and a non-negative � such that for all � � � � ,� K � � �
� K���� � �
� .
For example, lets consider that to solve a problem of size � , an algorithm � � �
�

requires
� �
	

 � � � �

steps. As � grows large, the term �
	

will start to dominate
and all other terms can be neglected. Furthermore, the constants will depend on the
precise details of the implementation and the hardware it runs on, so they should also
be neglected as well. The big O notation captures what remains, i.e. � � �
� � � � � 	 � and
it is concluded that the algorithm � � �
� has order of �

	
time complexity.
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Based on the above mentioned theory, analysis of the computational-time complex-
ity for all five steps of TR-ARCHITECT is described below. For the test architecture
design problem, the inputs are the TAM width � ����� and the set of cores � .

B.2 Creating a Start Solution

The small initialization step (Line 1) in the beginning of Algorithm 3.2 requires sorting
of cores and can be implemented such that it requires � � � �$� �	�
��� �$� � compute time.
The other three steps are simple for loops and their actual computational complexities
depend on the TAM width ������� and the number of cores � �$� . It is clear that Step 1 will
always be executed and only if ������� #� � �$� , then either Step 2 or 3 will be executed,
and hence ����� � #� � �$� represents the worst-case scenario.

Now lets first consider the case where ������� � � �$� , then Step 1 will require � �$�
iterations and Step 3 will require � � ��� ��
 � �$� ��� � �$� iterations. Therefore, the worst-
case time complexity for this case can be written as � � � �$� ������� �$� � � �$� � � � ��� � 

� �$� � � � �$� � . This can be approximated to � � � ��� � � �$� � . Similarly, for the case where
� ��� � � � �$� , the worst-case time complexity can be written as � � � �$� �	�
��� �$� � � ����� �
� � �$�	
 � ��� � � � � ��� � � , which again can be approximated to � � � ����� � �$� � . Therefore the
overall worst-case computational-time complexity of the procedure CREATESTART-
SOLUTION is � � � ��� � � �$� � .

B.3 Optimize Bottom Up

The computational-time complexity of this procedure heavily depends on the number
of TAMs created in the CREATESTARTSOLUTION step. In the worst-case, one can
assume that every core is connected to a separate TAM, i.e. � �$� � � �$� . Finding a
TAM with the minimum test time (Line 3) in Step 1 requires a linear search and can
be done in � �$� iterations. Finding a merge candidate TAM (Lines 5–12) also requires
� �$� iterations. Therefore, the worst-case time complexity of Step 1 can be written as� � � �$� � � �$� � .

In Step 2, free wires obtained in Step 1 are distributed among the TAMs. This step
is similar to Step 3 in CREATESTARTSOLUTION (Algorithm 3.2) and hence the worst-
case time complexity of this step can be written as � � � ��� � � �$� � . The case in which
all the TAMs are merged into a single TAM represents the worst-case for the proce-
dure OPTIMIZE-BOTTOMUP. Based on this, the overall worst-case computational-
time complexity of OPTIMIZE-BOTTOMUP step can be written as � � � �$� 
 � � � � �$� �
� �$� � � ����� � �$� � � , which can be approximated to � � � ����� � �$� 	 � .

B.4 Optimize Top Down

The computational-time complexity of this procedure depends on the number of TAMs
passed from the OPTIMIZE-BOTTOMUP step. In the worst-case, one can assume that
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there were no merging of TAMs possible in the OPTIMIZE-BOTTOMUP step, and hence
the number of TAMs is equal to the number of cores, i.e. � �$� � � �$� . Step 1 of the
OPTIMIZE-TOPDOWN procedure is similar to the procedure OPTIMIZE-BOTTOMUP,
except that there are no free wires here. Therefore, the worst-case time complexity of
Step 1 can be written as � � � �$� 	 � .

In Step 2, finding a merged TAM and assigning its width using a linear search re-
quires � � � �$� � ��� � � compute time. Furthermore, the distribution of free wires among
TAMs requires � � � ����� � �$� � compute time. Therefore, the worst-case time complexity
of Step 2 can be written as � � � ����� � �$� 	 � . Based on the worst-case time complexities
of Step 1 and Step 2, the worst-case computational-time complexity of the procedure
OPTIMIZE-TOPDOWN can written as � � � �$� 	 � � ��� � � �$�

	
� , which can be approxi-

mated to � � � ��� � � �$� 	 � .

B.5 Reshuffle

The worst-case computation scenario for this procedure will be the case in which all
cores except one are moved from the TAM with the maximum test time to other TAMs.
In the worst-case, the TAM with the maximum test time will contain � �$� 
 � cores.
Finding the TAM with the maximum test time requires � � � ��� � compute time. Next,
finding the core with the minimum test time in this TAM requires � � � �$� 
 � � com-
pute time. Now moving this core from this TAM to another TAM requires � � � �$� �
compute time. Therefore, a single iteration (moving only one core) of this procedure
require � � � �$� � � �$� 
 � � � �$� � compute time. Therefore, moving � �$�

 � cores will
require � � � � �$��
 � � � � � �$� � � �$� � � �$� ��� compute time. Since, the number of TAMs � �$�
can never be greater than the number of cores � �$� , the worst-case computational-time
complexity of the procedure RESHUFFLE can be approximated to � � � �$� 	 � .

B.6 Checking Empty Wire

For Step 1, the case in which the search for Pareto-Optimal widths is carried out till
every TAM has only one wire left represents the worst-case. Therefore, in the worst-
case, searching for a Pareto-Optimal width for a single TAM requires � � � ����� � com-
pute time. Since the search is carried out for all TAMs, the worst-case time complexity
of Step 1 can be written as � � � �$� ������� � .

In Step 2, the emptied wires from Step 1 are re-distributed among the TAMs to min-
imize the overall test time. This step is similar to Step 3 in CREATESTARTSOLUTION
(Algorithm 3.2) and hence the worst-case time complexity of this step can be written
as � � � ����� � �$� � . In Step 3, the search for the Pareto-Optimal width is carried out only
for the TAM with the maximum test time and hence its worst-case time complexity is� � � ����� � . Therefore, the worst-case computational-time complexity of the procedure
CHECK-EMPTYWIRE can be written as � � � �$� � ��� � � � �$� � ����� � � ����� � , which can
be approximated to � � � �$� � ����� � .





Summary

Advances in the semiconductor process technology enable the creation of a complete
system on one single die, the so-called system chip or SOC. To reduce time-to-market
for large SOCs, reuse of pre-designed and pre-verified blocks called cores is employed.
Like the design style, testing of SOCs can be best approached in a core-based fash-
ion. In order to enable core-based test development, an embedded core should be
isolated from its surrounding circuitry and electrical test access from chip pins to the
core should be provided. Isolation of a core is done by designing a wrapper around the
core, while the test access to the core is provided by means of a dedicated Test Access
Mechanism (TAM).

To design a test architecture for a SOC with a given number of cores and a given
number of test pins, the SOC designer has to determine the following: (1) the number
of individual TAMs, (2) TAMs widths, (3) the assignment of cores to TAMs, and (4)
wrapper design for each core. These parameters need to be chosen such that the total
number of pins used for the TAM wires does not exceed the given number of test
pins, while the total amount of test data fits onto the given Automatic Test Equipment
(ATE) and the SOC test time is minimized. The complexity of designing an architecture
increases exponentially with the number of cores and test pins. For a small SOC, having
only a few cores and a few test pins, a good test architecture can be designed manually.
However, for large real-life SOCs such as the Philips PNX8550 that contains more than
60 logic cores and

� 
 �
test pins, there is a need for a tool which can efficiently search

the solution space of feasible architectures and yield a (near-)optimal test architecture.

To assist SOC designers in selecting cost-effective test architectures and test sched-
ules for their embedded-core based system chips, such a tool, named TR-ARCHITECT
has been developed inside Philips. This thesis describes parts of the research work that
has been carried out at Philips Research Laboratories, Eindhoven, related to the de-
velopment of TR-ARCHITECT. TR-ARCHITECT uses a five-step heuristic algorithm
to design a test architecture. TR-ARCHITECT designs and optimizes test architec-
tures with respect to the required ATE vector-memory depth and test-application time.
TR-ARCHITECT optimizes wrapper and TAM design in conjunction. Experimental
results for the ITC’02 SOC Test Benchmarks show that, compared to manual best-
effort engineering approaches that are being used within Philips, TR-ARCHITECT can
save up to 75% in test time at negligible computation time. The original version of
TR-ARCHITECT has been step-wise extended to include various practical constraints
related to real-life SOC designs. The included constraints are layout, test control, user-

151



152 Summary

specific, and design hierarchy.

First practical use of TR-ARCHITECT was reported for the Philips PNX8550 SOC.
TR-ARCHITECT was only available halfway the design trajectory of PNX8550 SOC.
Despite of that it helped to optimize the test architecture further within the given con-
straints and we successfully managed to fit the test date onto the target ATE. Exper-
imental results show that, if TR-ARCHITECT would have been available from the
project start onwards, further test time reductions up to 50% would have been possible.



Samenvatting

De vooruitgang in de halfgeleider technologie heeft geleid tot de realisatie van een
compleet systeem op een plakje silicium, de zogenoemde systeem chip of kortweg
SOC. Grote SOCs maken gebruik van vooraf ontworpen en geverifieerde blokken
genaamd cores om de “time-to-market” te verkorten. Zoals de ontwerpstijl kan ook
het testen van SOCs het best worden benaderd op een core-gebaseerde manier. Om
core-gebaseerd testen mogelijk te maken dient een core geisoleerd te worden van zijn
omgeving en elektrisch toegankelijk te zijn vanaf de pinnen van de chip. Een core
wordt geisoleerd door het ontwerpen van een omhulling, terwijl de test toegang mo-
gelijk wordt gemaakt doormiddel van een Test Toegang Mechanisme (TAM).

Voor een SOC met een gegeven aantal cores en test pinnen dient de SOC ontwerper
bij het ontwerp van een test architectuur de volgende parameters te bepalen: (1) het
aantal afzonderlijke TAMs, (2) de breedte van een TAM, (3) de toewijzing van cores
aan TAMs, en (4) het ontwerp van de omhulling voor elke core. Deze parameters di-
enen zodanig gekozen te worden dat het aantal pinnen die nodig zijn voor de TAM
verbindingen niet het gegeven aantal test pinnen overschrijdt, terwijl de totale hoeveel-
heid test data past op het gegeven Automatische Test Apparatuur (ATE) en de SOC
test tijd is geminimaliseerd. De complexiteit van het test architectuur ontwerp neemt
exponentieel toe met een toenemend aantal cores en test pinnen. Voor een kleine SOC,
dat slechts enkele cores en test pinnen bevat, kan een goede test architectuur handmatig
worden ontworpen. Echter voor grote SOCs bestaat de behoefte voor automatisering
om efficint te kunnen zoeken binnen de oplossingsruimte van bruikbare architecturen
voor het verkrijgen van een (sub-)optimale test architectuur. Een voorbeeld van een
grote SOC is de Philips PNX8550 dat meer dan 60 logica cores en 280 test pinnen
bevat.

Binnen Philips Research Eindhoven is het tool TR-ARCHITECT ontwikkeld om
SOC ontwerpers te assisteren in hun keuze voor een kosteneffectieve test architectuur
en test schema’s voor hun core-gebaseerde systeem chips. Dit proefschrift beschrijft
een gedeelte van het onderzoek gerelateerd aan de ontwikkeling van TR-ARCHITECT.
TR-ARCHITECT maakt gebruik van een vijf-staps heuristiek algoritme om een test
architectuur te ontwerpen. TR-ARCHITECT ontwerpt en optimaliseert test architec-
turen voor de diepte van het benodigde ATE vectorgeheugen en de testapplicatie tijd.
Het ontwerp van omhulling en TAM wordt door TR-ARCHITECT gelijktijdig geop-
timaliseerd. Experimentele resultaten voor de ITC’02 SOC Test Benchmarks laten
zien dat TR-ARCHITECT tot 75tijd kan besparen bij een verwaarloosbare rekentijd
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in vergelijking met de handmatige best-effort technieken die worden gebruikt binnen
Philips. De oorspronkelijke versie van TR-ARCHITECT is stapsgewijs uitgebreid om
een aantal praktische limitaties van realiseerbare SOC ontwerpen mee te nemen. De
opgenomen beperkingen zijn layout, test controle, gebruikerspecifieke zaken en de hi-
rarchie van het ontwerp.

De eerste toepassing van TR-ARCHITECT was gerapporteerd voor de PNX8550
SOC. TR-ARCHITECT was slechts beschikbaar vanaf de helft van het PNX8550 SOC
ontwerp traject. Desondanks is de bestaande test architectuur verder geoptimaliseerd
binnen de gestelde beperkingen en hebben we de test data passend kunnen maken voor
de specifieke ATE. Volgens experimentele resultaten was er een verdere besparing tot
50% in test tijd mogelijk, indien TR-ARCHITECT vanaf het begin van het project
beschikbaar was geweest.
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